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ABSTRACT

Medicine is moving from a curative discipline to a preventative discipline relying on personalised and
precise treatment plans. The complex and multi level pathophysiological patterns of most diseases
require a systemic medicine approach and are challenging current medical therapies. On the other
hand, computational medicine is a vibrant interdisciplinary field that could help move from an
organ-centered approach to a process-oriented approach. The ideal computational patient would
require an international interdisciplinary effort, of larger scientific and technological interdisciplinarity
than the Human Genome Project. When deployed, such a patient would have a profound impact
on how healthcare is delivered to patients. Here we present a computational patient model that
integrates, refines and extends recent mechanistic or phenomenological models of cardiovascular,
RAS and diabetic processes. Our aim is twofold: analyse the modularity and composability of
the model-building blocks of the computational patient and to study the dynamical properties of
well-being and disease states in a broader functional context. We present results from a number of
experiments among which we characterise the dynamic impact of COVID-19 and type-2 diabetes
(T2D) on cardiovascular and inflammation conditions. We tested these experiments under different
exercise, meal and drug regimens. We report results showing the striking importance of transient
dynamical responses to acute state conditions and we provide guidelines for system design principles
for the inter-relationship between modules and components in systemic medicine. Finally this initial
computational Patient can be used as a toolbox for further modifications and extensions.

Keywords computational Patient · computational Medicine · Systems medicine · COVID · T2D Diabete ·
Cardiovascular model · Blood Pressure model

1 Introduction

Computational medicine is increasingly effective to understand and predict complex physiological and pathological
conditions in scenarios of single organ disease to comorbidities. Both mechanistic and phenomenological models are
important aspects of computational medicine. When we formulate hypotheses on the mechanisms (usually involving
molecules) underlying the behaviour of the various endpoints of a process, we could build a mechanistic model; when
we formulate hypotheses based on the empirical observations of a phenomenon, we could build a phenomenological
model. Most models are actually a combination of the two and there are certainly overlaps between phenomenological
modeling, statistical and machine learning. Mechanistic and phenomenological modeling aim at reproducing the main
features of a real system with the minimum number of parameters and still providing explainability, interpretability
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and often causality. The objective is to gain a better understanding of how each of the different components of a
biomedical system contribute to the overall process, its emerging properties and the causality relation of the occurred
events. A mechanistic and phenomenological model could be formulated using ordinary or partial differential equations
[1], stochastic processes [2], logic [3] or in terms of a tailor-made syntax which could facilitate formal analysis and
verification [4, 5]. The dedicated modeler may introduce a series of models of a process at different scales, from
the molecular level to the whole body level, or describing processes occurring in different organs under the same
disease conditions. Although there is growing awareness of long range communications in the body - for instance the
communicome [6] or the gut-brain axis [7], the integration of various models in order to capture the behavior at systems
medicine level has not been pursued so much. Examples of such multi level communication are given by the extensive
network of comorbidities. Comorbidity is the term used to address diseases, often chronic ones, co-occurring in the
same individual. An important challenge is the homogenisation of models across multiple spatial and time scales, which
requires cell-level models to be systematically scaled up to the tissue/organ level, and related asymptotic techniques for
the analysis of multiple timescale problems, such as those arising in processes communications. The cardiovascular
system is usually described using a cardio-centric view. As an example, the heart is considered as the only pump in the
system. Other pumps are actually the skeletal muscle which returns blood from the periphery to the central circulation.
Another pump is embedded in the elastic arteries that use elastic properties to propel the blood forward. This system
is subtly coupled with the cardiovascular-associated nervous system and the blood pressure control which include
the regulated inputs from many other organs, most notably lungs, kidney and pancreas [8]. Therefore, the concept of
cardiovascular disease could be reformulated as a more complexly connected system and disease landscape, perhaps
inclusive of comorbidities, which could allow a better patient stratification and prognosis and consequently better drug
discovery.

In particular, infectious diseases are good examples of the need of inter-organ and inter-process modeling approaches as
a pathogen fitness may require colonising different body environments. A current example is given by the COVID-19
pandemia. Diabetes is a frequent comorbidity; the Coronado study has shown that 29% of the people with T2D
infected with COVID-19 were intubated and 10.6% die in one week [9]. The mortality statistics show that fighting
the COVID-19 pandemia requires a focus on comorbidities. Many of the older patients who become severely ill have
evidence of underlying illness such as cardiovascular disease, kidney disease, T2D or tumours [10]. They make the
largest percentage of patient who cannot breathe on their own because of severe pneumonia and acute respiratory
distress syndrome and require intubation: about a quarter of intubated coronavirus patients die within the first few
weeks of treatment [11].

2 Objectives

Objective 1

Introduce modular and composable paradigms for the design of computational patients.

In Sec. 3 we propose a modular approach for the design of personalised computational physiology systems. The
complexity underlying multifactorial diseases requires the introduction of multi-scale, extensible and adaptable models
where modular principles are used to break organism complexity and composable criteria to select, link and combine
different components in a hierarchical fashion.

Objective 2

Show how our approach may help in disclosing cascade effects of comorbidities.

In Sec. 6 we illustrate a concrete example where personalised comorbid conditions’ dynamics can be modeled and
analysed using our framework. We focus on developing an integrated computational system modeling ripple effects of
comorbidities on blood pressure regulation. To this end, in Sec. 4 we revised the physiological background required
to understand the main underlying biological processes involved in this mechanism. Building upon previous studies,
we devise a customisable computational patient in the form of a computational tool composed of extended versions
of three publicly available mathematical models describing the circulatory system [12], type-2 diabetes [13], and
renin-angiotensin system (RAS) [14], one of the main pathways regulating inflammatory response and blood pressure.
Respiratory failure is a key feature of severe COVID-19 and a critical driver of mortality; 10.6% of all diabetic patients
hospitalised die within one week. Hence, in Sec. 5 we propose a set of equations modeling the impact of type-2 diabetes
on blood vessels’ stiffness and the influence of additional external factors which can be personalised according to
patient’s characteristics and lifestyle habits. We introduce a variety of such elements describing the repercussions on
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blood pressures caused by ageing, type-2 diabetes, viral infections like COVID-19, ACE inhibitor treatments, meals,
and physical exercise.

3 Computational tool

3.1 From integration to modularity and composability

In recent decades, the interest and the scientific effort in developing integrated quantitative and descriptive computational
systems modeling physiological dynamics has rapidly grown. By 1997 the Physiome Project [15] and the EuroPhysiome
Initiative [16] have actively devised and organised rich collections of mathematical models describing the functional
behavior of components of living organisms, such as organs, cell systems, biochemical reactions, or endocrine systems.
Such a modular approach has been primarily used to reduce complexity by deconvolving the human physiome into
elementary subunits. Indeed, each computational module can be seen as a standalone biological entity describing
one of the structures, processes, or pathways of the whole organism. Yet, modeling physiological interactions, multi-
scale signalling, and comorbidities requires the combination of multiple components to build more sophisticated
computational systems. Several approaches have been proposed where different mathematical models have been
integrated into a single system in order to describe synergistic effects and emerging phenomena [12]. Despite being
widely used and accepted, such system design paradigm often requires an overwhelming amount of work in merging
multiple systems together, and in tuning and validating the integrated model. Besides, technological advances in
computer science in the last twenty years have dramatically changed coding languages and paradigms. Hence, different
research groups have developed their computational systems on many different coding platforms, frameworks, and
libraries, including general-purpose languages like MatLab, Java, Python, C, but also special-purpose ones like JSim.
The variety of implementation platforms combined with the mathematical effort required to merge many different
systems is in conflict with the urgent need of user-friendly, extensible, and adaptable system design paradigms where
components can be selected and assembled in various combinations to satisfy specific requirements. Personalised
medicine requires the introduction of novel system design paradigms where modules break organism complexity and
composable criteria are used to select and combine different components. Instead of merging, tuning, and validating
the whole integrated system, each module could be tuned and validated independently. Composable criteria may
allow researchers to primarily focus on multi-scale signalling between modules. Tuning and validation may apply
just on inter-module signals which will make the overall system independent on module-specific implementation
characteristics.

3.2 Module design and personalisation

In order to move towards this modern system design, each module can be seen as a black box processing signals coming
from other modules and combining them with external subject-specific parameters in order to provide a set of responses
(see Fig. 2). Subject-specific parameters may be derived from on-line clinically relevant measures, such as heart
pressure or insulin levels, or from the Electronic Health Record [18, 19], such as morbidities, treatments, or clinical
examinations. Such elements can be used to personalise the module taking into account unique subject characteristics.
Incoming signals from other components may impact some of the variables and parameters of the module, but cannot
change its architecture. Finally, the outputs provided by each module can be simultaneously used as inputs for other
components or tracked as clinically relevant latent variables.

3.3 Usage guidelines

The computational system has been designed in order to allow for three levels of user interaction. computational
scientists and coders may take advantage of publicly available code by improving or forking the GitHub repository [21].
The repository structure has a modular design so that new packages can be included independently. Each new package
should correspond to a new mathematical model. Multiple packages can be combined together in order to generate
more complex computational systems. Medical practitioners and biologists with some Python experience may just
download the repository, reproduce the simulations on their computers, or modify some parameters. In order to make
the computational tool available for clinicians and practitioners without coding skills, the whole computational system
has been incorporated into a website with a graphical user interface. Users may profit from this user-friendly interaction
as the system can be customised in many different ways creating multiple scenarios by modifying several parameters,
including patient-specific characteristics and constants related to models’ interactions.
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Figure 1: In modular systems several modules can be used independently to model physiological processes, disregarding
their mutual relationships (A). The selection and combination of different components in a hierarchical fashion by
means of composable criteria allows a better exploration of the parameter space (B). The actual interpenetration of
multiple systems can be achieved by modeling the dynamics of their mutual relationships providing further information
on the underlying phenomena (C). Such deeper exploration of the parameter space enhances the evaluation of initial
conditions and trajectories in the phase space (right).
Figure design inspired by [17].

3.4 Numerical methods

All the necessary code for the experiments has been implemented in Python 3, relying upon open-source libraries.
The mathematical equations described in Sec. 5 form a set of ODE systems and algebraic equations that have been
sequentially solved using the LSODA integration method [22, 23] provided by the function solve_ivp included into the
scipy Python package [24]. All the experiments have been run on the same machine: Intel R© CoreTM i7-8750H 6-Core
Processor at 2.20 GHz equipped with 8 GiB RAM.

4 Physiological background

The objective of our model is showing how the combined effects of comorbidities may lead to severe cardiovascular
and pulmonary conditions. To this aim, we include in our model some of the main factors, pathways, and morbidities
affecting blood pressure with a focus on pulmonary vessels, i.e. oxygenation, arterial stiffness, diabetes, RAS, and
COVID-19. In this section we revise the physiological background of the elements involved in our computational
system.

4.1 The link between hypertension, oxygenation and blood pressure variability

Exposure to chronic hypoxia causes pulmonary hypertension and pulmonary vascular remodelling [25]. COVID results
in decreased oxygen that can result in impaired functioning of the heart and brain and cause difficulty with breathing
(a PaO2 reading below 80 mm Hg or a pulse ox (SpO2) below 95 percent is considered low). When the left side of
the heart cannot pump blood out to the body normally, blood backs up in the lungs and increases blood pressure there.
The COVID-19 virus can activate the blood clotting pathway. Studies have reported that 30% of COVID-19 patients
showed signs of blood clots in their lungs which means that a blood clot that has traveled to the lung. One of the
recommendations is to give a low dose of heparin, which prevents clot formation or tissue plasminogen activator (tPA),
which helps to dissolve blood clots [26, 27]. High blood pressure can damage the arteries by making them less elastic,
which decreases the flow of blood and oxygen and leads to heart disease. The relationship between blood pressure and
stroke recurrence is controversial. Recent researches stress that both high mean value of blood pressure and blood
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Figure 2: Modular paradigms are used to break organism complexity into simpler components which can be analysed
and modeled independently (left). Integrating different modules requires an overwhelming amount of work in merging
one after the other multiple systems together, and in tuning and validating the final model (top right). Composable
criteria favor a dynamic and adaptable selection of different components allowing researchers to primarily focus on
modeling the relationships between modules (bottom right).
Illustrations adapted from The Sourcebook of medical illustration [20].

pressure variability (particularly long term) are important. Although some variation in blood pressure throughout the
day is normal, higher variation in blood pressure is associated with a higher risk of cardiovascular disease and all-cause
mortality [28, 29]. In young people here is a an increased blood supply response to hypoxia which could vanish in
elderly with high blood pressure. This compromised response may be caused by the high blood pressure-induced
impairment in the function of the blood vessels [30].

4.1.1 Arterial stiffness

Arterial stiffness is a broad term used to describe loss of arterial compliance and changes in vessel wall properties.
Both arterial stiffness and high blood pressure variability can be indicators of cardiovascular risk [31, 32, 33, 34, 35].
Ageing increases arterial stiffness and that increased arterial stiffness gives rise to increased blood pressure variability
[36]. Although arterial stiffness can be assessed using a variety of techniques, carotid–femoral pulse wave velocity
is the preferred measure. It has been shown that increased arterial stiffness is an early risk marker for developing
type-2 diabetes [37], and a causal association between T2D and increased arterial stiffness has been proved on a large
cohort of patients [38, 39]: 1 standard deviation increase in T2D is associated with 6% higher risk in increased arterial
stiffness; see also [40]. Arterial stiffness is also related to Inflammageing which is a chronic low-grade inflammation
that develops with advanced age. It is believed to accelerate the process of biological ageing and to worsen many
age-related diseases [41, 42]. In particular inflammatory cytokines (which may be activated by angiotensinII) result in
increased arterial stiffness; on the contrary reductions in inflammation (for example due to anti-inflammatory cytokines),
exercise reduce arterial stiffness [43, 44].

4.2 The renin-angiotensin system and SARS-CoV-2

The renin-angiotensin system (RAS) is a hormone system regulating vasoconstriction and inflammatory response [45].
The key regulator of the RAS is the peptide hormone Angiotensin II (ANG-II) generated by the angiotensin-converting
enzyme (ACE) which cleaves the decapeptide Angiotensin I (ANG-I), or proangiotensin. ANG-II exerts its biological
functions through two G-protein-coupled receptors, the ANG-II receptor type 1 receptor (AT1R) and ANG-II receptor
type-2 receptor (AT2R), and the heptapeptide Angiotensin (1-7) (ANG-(1-7)) which binds and activates the G-protein-
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coupled Mas receptor (MAS). ANG-(1-7) can be generated both by the angiotensin-converting enzime 2 (ACE2) from
ANG-II, or by the neutral endopeptidase enzyme (NEP) from ANG-I. The three G-protein-coupled receptors (AT1R,
AT2R, and MAS) are the main factors helping the body to carry out the role of ANG-II in regulating blood pressure
over the course of the day [46][47]. On one side, AT1R stimulates vasoconstriction, hypertension, and inflammatory
response. The effect of AT1R is counterbalanced by MAS, promoting vasodilation, hypotension, and vasoprotection.
The role of AT2R is currently debated [48]. Under normal physiologic conditions, AT2R counteracts most effects of
AT1R. However, recent developments have shown how its vasodilatory effects were not associated with significant
reduction in blood pressure [49]. In the kidney, AT2R stimulation produced natriuresis, increased renal blood flow,
and reduced tissue inflammation [50, 51, 52]. External factors impacting the RAS include: glucose concentration,
ACE inhibitor treatements, and viral infections binding to ACE2, such as SARS-CoV-2. Glucose concentration has
a direct impact both on AT1R and ACE activity. A high glucose concentration may determine chronic hypertensive
conditions. Therefore, hypertensive treatments usually include ACE inhibitor drugs which are used to compensate the
overproduction of ANG-II and AT1R [53]. Viral infections such as COVID-19 may also have a negative impact on
RAS, as the virus binds to ACE2 in order to gain entry into the host cell, impairing the activity of ACE2 in generating
ANG-(1-7) by hydrolyzing ANG-II [54].

ANG IANG II

AT1R

ACEACE2

SARS-CoV

ANG-(1-7)

MAS

NEP

VasoconstrictionHypertensionInflammation

VasodilationVasoprotectionHypotension?

SARS-CoV

PULMONARY CIRCULATION

SYSTEMIC CIRCULATION
BARORECEPTORS

KIDNEYS

ALVEOLI
ACEi
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Figure 3: Schematic representation of the circulatory system composed of heart, pulmonary circulation, systemic
circulation, and baroreceptors (left). External factors affecting the renin-angiotensin system (ACEi and SARS-CoV-2)
are shown in violet (right).
Illustrations adapted from The Sourcebook of medical illustration [20].

5 Mathematical model of diabetic computational patients

In this section we present a concrete example describing a set of mathematical models that can be used to model a
computational patient.

We focus on modeling a diabetic computational patient by combining four modules: RAS 5.1, diabetic 5.2, circulatory
5.3, and stiffness 5.4 models. Fig. 3 shows a schematic representation of the computational system. The computational
patient can be customised in two different ways. First, the system has been designed in order to be personalised using
patient-specific values for some parameters such as age, glucose levels, arterial blood pressure, presence of comorbidities
or treatments (see Table 1). Should the physiological analysis require the inclusion of additional conditions, new
modules can be included and composed according to patient’s needs.
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Table 1: computational patients’ customisable parameters.

Class Parameter Description Values Units

Clinical record

A Age 20− 70 years

G Blood glucose levels 100− 200 ml/dl

ABP Arterial blood pressure (from clinical records, e.g. [12]) 80− 120 mmHg

[D] Vitamin D concentration 20− 40 ng/mL

Comorbidities
infection Presence/absence of SARS-CoV-2 infection {True,False} -

renal Normal/impaired renal function {True,False} -

Treatments

drug Presence/absence of ACEi treatments {True,False} -

d ACEi dosage (Benazepril) 0− 5 mg

nd Number of daily drug administrations {0, 1} -

[heparin]0 Initial heparin dosage by intra venous injection 5000− 10000 U/mL

Lifestyle

tw Daily workout starting time 6 p.m. -

zw Daily workout intensity (burned calories) 200 kcal

tm Daily meals’ starting time {8 a.m. , 12 p.m. , 8 p.m.} -

gm Daily meals’ glycemic load {4, 42, 42} -

sm Daily meals’ carbohydrate serving {50, 100, 100} g

5.1 Renin-angiotensin system and blood pressure regulation

The biochemical reaction network used to model the renin-angiotensin system is shown in Fig. 3. External factors
include hypertension treatments and viral infections binding to ACE2, such as SARS-CoV-2. Hypertension drugs
usually target ACE inhibiting ANG II production. ANG II promotes vasoconstriction, hypertension, inflammation,
and fibrosis by activating AT1R. Therefore, reducing ANG II production with ACE inhibitors increases vasodilation
and vasoprotection effects stimulated by AT2R and ANG-(1-7). On the other hand, SARS-CoV-2 infections reduce
ANG-(1-7) and ANG-(1-9) production rate, by binding to ACE2 in order to gain entry into the host cell. Hence,
vasoprotection effects promoted by ANG-(1-7) decline, possibly leading to hypertension and inflammatory response.

5.1.1 Pharmacokinetic model

Pharmacokinetic (PK) models are used to describe drug absorption and excretion dynamics. Equation 1 describes
the analytical solution of a single-compartment pharmacokinetic model with first-order absorption and first-order
elimination rates after oral administration [55]. The equation has been used to model ACE inhibitors’ dynamics and
their effects on the RAS. A uniform dose size d at constant time intervals τ has been assumed [56]:

[Drug]n(t
′) = d

kaF

(ka − ke)V

(
1− exp(−nkeτ)

1− keτ
exp−ket′ −

1− exp(−nkaτ)
1− kaτ

exp−kat′
)

(1)

where [Drug]n(t
′) is the drug concentration after the n-th dose, t′ = t(n− 1)τ is the time after the n-th dose, ka and

ke are the absorption and elimination rates respectively, F is the absorbed fraction of the drug, and V the volume of
distribution.

Pharmacokinetic parameters have been reported in table 3.

5.1.2 Pharmacodynamic model

Pharmacodynamic models are used to illustrate the effects of drug treatments on the body. The pharmacodynamic
model used to describe local RAS dynamics has been derived from [57, 14] (see Eqs. 16-20). The original model has
been extended with four additional equations (Eqs. 2-5). The variation of [ANG17], [AT1R] and [AT2R] have been
included as their dynamics can be useful in understanding how RAS regulates blood pressure [58]. The concentration
of ANG-(1-7) depends on the activity of two enzymes, NEP and ACE2, cleaving ANG-I and ANG-II respectively.
[AT1R] and [AT2R] rather depend on [ANGII] and on glucose concentration G.
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d[ANG17]

dt
=

NEP-catalyzed conversion of ANG I︷ ︸︸ ︷
kNEP [ANGI] +

ACE2-catalyzed conversion of ANG II︷ ︸︸ ︷
kACE2[ANGII] −

degradation︷ ︸︸ ︷
ln 2

hANG17
[ANG17] (2)

d[AT1R]

dt
=

ANG-II bounds︷ ︸︸ ︷(
aAT1RG+ bAT1R

)
[ANGII]−

degradation︷ ︸︸ ︷
ln 2

hAT1R
[AT1R] (3)

d[AT2R]

dt
=

ANG-II bounds︷ ︸︸ ︷
kAT2R[ANGII]−

degradation︷ ︸︸ ︷
ln 2

hAT2R
[AT2R] (4)

The dynamics of ACE2 activity (kACE2) has been introduced as an indicator of SARS-CoV-2 infectivity [54]:

dkACE2

dt
=

{
sV [ANGII]− eAIkACE2 during SARS-CoV-2 infection
0 otherwise

(5)

where sV represents the severity of the viral infection and eAI the efficiency of anti-inflammatory pathways. A higher
concentration of [ANGII] may also induce cells to produce more ACE2, thus increasing its activity [54] and enhancing
viral entry. Hence ACE-inhibitor treatments may have a protective role as they reduce ACE activity lowering ANG-II
levels (see Fig. 3).

Pharmacodynamic parameters and initial conditions have been reported in table 4.

5.2 Adding comorbidities: type-2 Diabetes

type-2 diabetes is a metabolic disease whose progression and severity is caused by increasing failure of insulin-
production due to beta cell death.

There are complex multifactorial links between diabetes and cardiovascular disease [59, 60, 61, 62]. The main
pathophysiology cornerstone is a state of chronic, low-level inflammation. This immune activation may facilitate both
the insurgence and progression of insulin resistance in diabetic and pre-diabetic states and increases their cardiovascular
risk. An extension of a model from Topp and collaborators (Eqs. 6-9) combines insuline resistance, functional β-cell
mass dynamics with glucose dynamics and insulin dynamics [13]. The insulin and glucose dynamics are faster than the
beta cell dynamics. Mild hyperglycaemia leads to increasing beta cell numbers, but above a threshold of 250mg/dL
blood glucose, beta cell death is greater than cell division. Additional terms (not shown) include and non-functional beta
cells (βf and βnf ), activated macrophage, pathogenic T cells, insulin resistance, mTOR levels and beta cell antigenic
protein concentrations [63]. The distinction between beta cells into functioning and non-functioning cells allows to
take into account for the reduction and exhaustion of insulin produced by the beta cells. Although the preliminary
outcomes of the DIRECT study suggests that beta cells can be restored to normal function through the removal of
excess fat in the cells [64, 65], we have not taken into account the recovery of the pancreatic function. Inflammation
is key in diabetes, and the interaction between inflammation and metabolism can be considered a key homeostatic
mechanism [66]. The model considers both the effect of exercise and dietary [67]. This model was analysed using
sensitivity analysis and investigation to determine its properties (not shown). Sensitivity analyses are commonly used in
inverse modelling to determine how significant each parameter is to the output variables of the system. A local analysis
describes the sensitivity relative to point estimates of the parameters whereas a global analysis examines the entire
parameter distribution.

dG

dt
= R0 −G

(
EG0 +

effect of insulin resistance︷ ︸︸ ︷
SI

I

IR + i

)
+

diet︷ ︸︸ ︷
R1Hm(t)−

workouts︷ ︸︸ ︷
R2Hw(t) (6)

dI

dt
= σ

effect of glucose︷ ︸︸ ︷
βfG

2

α+G2
−kI (7)
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dβf
dt

= −r0 + r1G− r2G
2βf (8)

dIR
dt

= −i0IR +

pro-inflammatory cytokines︷ ︸︸ ︷
mCyt +qI (9)

where G is the glucose concentration, I is Insulin concentration, βf functioning β-cells, IR insulin resistance, and Cyt
is the concentration of pro-inflammatory cytokines [68, 69, 70]. Hm and Hw are two step functions describing glucose
intake during meals and glucose consumption during workouts respectively:

Hm =
∑
i

gm,ism,iItm,i(1+∆m)(t) (10)

Hw =
∑
i

zw,iItw,i(1+∆w)(t) (11)

where gm is the glycemic load, sm the carbohydrate serving, and tm the meal starting time; zw the number of burned
calories and tw the workout starting time; Itm,i(1+∆m)(t) and Itw,i(1+∆w)(t) are indicator functions.

Here we consider progressive alteration of arterial stiffness and hypertension in diabetic patients. It is noteworthy
that low chronic inflammation related to metabolic active abdominal obesity (abnormal secretion of adipokines and
cytokines like TNF-alfa and interferon) and the impaired immune-response to infection (abnormal cytokine profile
and T-cell and macrophage activation) cause an increased risk of severe COVID-19. Diabetic patients are frailer with
respect to the normal population when considering COVID-19 multi-organ and multi-process disruption.

5.3 Circulatory system model

Circulatory system models are used to describe blood flow, volume, and pressure dynamics. Equations 21-117 illustrate
a simplified open-loop cardiovascular model composed of five components: heart (21-41), systemic circulation (42-76),
pulmonary circulation (77-90), coronary circulation (91-106), and baroreceptors (107-111). Equations have been derived
from the open-loop circulatory model proposed in [12]. The heart model is composed of four sections (chambers)
corresponding to right atrium, right ventricle, left atrium, and left ventricle. Each chamber is modeled as a bellows
pump comprised of a one-way valve (pulmonary, tricuspid, mitral, and aortic) and a time-varying elastance (Eq. 28)
controlling blood outflow [71, 72]. Blood inflow is passive. The systemic circulation has been modeled with seven
vascular segments: proximal aorta, distal aorta, arteries, arterioles, capillaries, veins, and the vena cava. Each vessel
has been designed using a resistance element reflecting the impact on blood flow reduction and a compliance element
indicating the tendency of arteries and veins to stretch in response to pressure. High-frequency effects caused by wave
reflections at great arterial bifurcations (distal and proximal aorta) are modeled with inertance elements. Arterioles,
veins and vena cava have unique nonlinear PV relationships as described in [73] (see Eqs. 50-52, 54, and 42). The
pulmonary circulation is composed of five vascular segments: proximal and distal pulmonary artery, small arteries,
capillaries, and veins. Wave reflections in the proximal and distal pulmonary arteries are modeled with inertance
elements. The coronary circulation model consists of four segments: epicardial and intramiocardial arteries, coronary
capillaries, and coronary veins. Following [12], large and small artery and vein segments proposed in [74] have been
condensed into intramiocardial arteries and coronary veins, respectively. Baroreceptors are special sensory neurons that
are excited by a stretch in the carotid sinus and aortic arch vessels. Their feedback is processed by the brain in order
to maintain proper blood pressure. Baroreceptors’ firing frequency to the brain has been modeled as a second-order
response to the aortic pressure change [75, 73]. The second-order differential equation has been rewritten into two first
order equations in order to make it compatible with common Python solvers (Eqs. 109 and 110).

Circulatory system parameters and initial conditions have been reported in table 7.

5.4 Stiffness model

The complexity underlying multifactorial diseases requires the introduction of computational systems representing
multi-organ and inter-process communication. To this aim, we propose a mathematical model describing the impact of
comorbidities on the circulatory system. Several factors influencing blood pressure and arterial stiffness have been
modeled including: diabetes, renal impairments, viral infections, lifestyle and ageing.
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Ageing affects the circulatory system in multiple ways. Baroreceptors’ feedback and pathways to the heart’s pacemaker
system decrease their efficiency over time. Heart muscle cells tend to degenerate and its walls get thicker slowing down
the time the heart takes to fill with blood increasing pressure on the vessels. Additionally, blood vessels show a decrease
in performance, since arteries tend to narrow and become more rigid.

Glucose concentration affects the renin-angiotensin-aldosterone pathway as it controls the concentration and activity
of Renin, ACE, and AT1R. AT1R activity is strongly related to vasoconstriction, hypertension, and inflammatory
response. Hence, arterial stiffness gets even worse increasing the risks of clogged arteries and strokes. Besides,
SARS-CoV-2 strongly bind to ACE2 decreasing its availability and impacting downstream RAS pathways regulating
blood pressure. Lower levels of available ACE2 reduce the concentration of ANG-(1-7), the endogenous ligand for the
G protein-coupled receptor MAS, a receptor associated with cardiac, renal, and cerebral protective responses. Hence,
vasoprotection and hypotension feedbacks deteriorate increasing inflammatory response and pressure on blood vessels.

The combined effect of comorbidities and ageing factors on arterial stiffness and inflammation may lead to critical
circulatory conditions and fibrosis. High glucose concentrations strengthen RAS hypertension feedbacks and lower
blood vessels’ lumen, especially on capillaries, arterioles, and venules. By affecting blood pressure regulation pathways,
SARS-CoV-2 infections may impair vasoprotection regulation by the RAS endangering the whole circulatory system
with disruptive repercussions among the elderly. The combination of all such factors may lead to acute diseases such
as thrombophlebitis, cardiomyopathy, myocardial infarction, pulmonary embolism, heart failure, and eventually to
patients’ death.

The diabetic model (Sec. 5.2) accounts both for hyperglycemic conditions and lifestyle habits. After lunch and
dinner, glucose concentration in blood vessels peaks, while it is scaled down by insulin or physical exercise. The RAS
model (Sec. 5.1) has been used to simulate peptides’ and drug concentration dynamics taking into account glucose
concentration, ACE inhibitor treatments, renal conditions, and viral infections binding to ACE2 (such as COVID-19).
Abnormal ACE2 activity (kACE2 − kACE2,0) has been assumed as proportional to SARS-CoV-2 infectivity (see Eq. 5).
ACEi or ARB treatments could also increase ACE2 abundance and thus enhance viral entry [54]. In case of severe renal
conditions, only a fraction of drug diacid is expelled before the subsequent administration (see Eq. 1 and Fig. 4). The
drug surplus left inside the body may reinforce inflammation. Overall, the inflammatory response has been modeled as
a function of all such contributions:

dIR
dt

=

viral infection︷ ︸︸ ︷
kSARS(kACE2 − kACE2,0)+

drug treatment︷ ︸︸ ︷
kD[Drug] +

glucose︷︸︸︷
kGG −

anti-inflammatory response︷ ︸︸ ︷
keff IR (12)

where kSARS represents SARS-CoV-2 affinity with ACE2, kD the inflammation rate due to ACEi surplus, kG the
inflammation rate due to glucose surplus, and keff the anti-inflammatory response rate.

One of the main processes associated with arterial stiffness occurring during ageing is DNA methylation, consisting in
the addition of methyl groups to the DNA molecule which may modify the activity of a DNA segment without changing
the sequence. DNA methylation has been modeled as a linear function of the age A [31]:

αMET = β0 − β1A β0,1 ≥ 0 (13)

As a result, blood vessels’ compliance parameters have been reduced by a factor accounting for the combined effect of
inflammation (Eq. 12) and ageing (Eq. 13):

Ĉi =

stiffness︷ ︸︸ ︷
αMET

(
1− IR

100

)
Ci (14)

where Ci is the compliance of the blood vessel i for a young healthy individual and Ĉi is the reduced compliance. The
circulatory model (Sec. 5.3) has been used to simulate blood pressure dynamics in critical vessels where blood pressure
spikes may lead to acute diseases.

5.5 Extending the model to COVID-19 treatments

One of the main issues related to COVID-19 is blood clotting. Studies have reported that 30% of COVID-19 patients
showed signs of blood clots in their lungs. One of the recommendations is to give a low dose of heparin, which prevents
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clot formation or tissue plasminogen activator (tPA), which helps to dissolve blood clots [26, 27]. Besides, several
observational studies and clinical trials reported that vitamin D supplementation reduced the risk of influenza and
inflammation by raising its blood concentrations above 40-60 ng/mL (100-150 nmol/L) [76, 77, 78, 79]. Hence, we
extended our model by taking into account such preliminary COVID-19 treatments. In fact, both heparin and vitamin
D have an indirect impact on blood pressure by making blood less dense, reducing clotting formation, and lowering
inflammation. We modeled the impact of such treatments by including additional terms on blood pressure inside the
cardiovascular model:

p̂i = pi − βh[heparin]− βD([D]− [D]0) (15)

where [heparin] is the heparin dosage and [D] the vitamin D concentration.

6 Experiments

The models presented in Section 5 have been solved to analyze the effects of comorbidities like diabetes, renal
impairment, and viral infections affecting the circulatory system. Table 2 reports the set of experimental conditions
that have been analysed. Five computational patients have been created corresponding to different physiological states.
These scenarios have been further stratified by the age of the computational patient, given that arterial stiffness has been
modeled as a function of the increased DNA methylation during ageing. Drug concentrations (Fig. 4), inflammation
levels, and blood pressure dynamics in lung vessels (Fig. 5) in comorbid conditions have been compared to the dynamics
obtained in healthy states or using ACE inhibitor treatments.

Table 2: computational patients’ conditions used for the simulations. The diabetic and the RAS models do not depend
on patient’s age. Lifestyle habits have been set as three meals and one light workout session in the afternoon for all
patients.

Label Age Description

H 20 Healthy individual

D - Diabetic individual

R - Individual with renal impairment

C+T 70 Individual with comorbid conditions (diabetes + renal impairment) treated with ACEi

V 70 Individual with COVID-19

C+V 70 Individual with comorbid conditions and COVID-19

C+V+T 70 Individual with comorbid conditions and COVID-19 treated with ACEi

C+V+3T 70 Individual with comorbidities and COVID-19 treated with ACEi, heparin, and vitamin D

The RAS model has been simulated for constant glucose cases using the daily glucose peak predicted by the diabetic
model right after the main meals. Glucose concentration ranged between the extremes of normal glucose at 6 − 7
mmol/L (corresponding to 108 − 125 ml/dl) and high glucose at 10 − 11 mmol/L (corresponding to 180 − 200
ml/dl) based on experimental studies [80, 81, 82]. The time window of the RAS simulations has been set to five
days, corresponding to five daily ACEi administrations [53]. The simulation results have been used to compute
arterial stiffness and to reduce compliance parameters of blood vessels in the open-loop circulatory model. In the
following simulations the arterial blood pressure (ABP) signal used in [12] has been used instead of personalised
clinical measurements.

Fig. 4 shows the dynamics of the concentration of ACEi and glucose-insulin dynamics over the first five days of
treatment. Due to renal impairment, the computational patient was not able to expel the drug dose before the next
administration. The inflammatory response and the corresponding blood pressure dynamics in lungs’ vessels are shown
in Fig. 5. Comorbid conditions tend to increase blood pressure variability in all scenarios. However, as arterial stiffness
grows with the age of the computational patient, the variability increases as well, possibly leading to irreversible
deterioration of blood vessels’ walls. ACEi treatments may help in reducing inflammation levels, but may not be
sufficient to recover healthy blood pressures. One of the most serious effects illustrated by simulations consists of
an increased mean value of blood pressure and blood pressure variability especially on small pulmonary vessels and
capillaries (see Fig. 5), increasing the risk of clogged arteries, fibrosis, and strokes. Besides, experimental results
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Figure 4: Drug concentration for healthy individuals and patients with renal impairments (left). Glucose metabolised
by insulin in healthy and diabetic individuals (right).

shows how fluctuations of variables over time may change and present different shapes especially on small vessels.
In computational patients with comorbidities blood pressure dynamics in pulmonary capillaries exhibit higher mean
values and variability, but beat frequencies can be observed as well.
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Figure 5: Inflammation scores (top-left, see Eq. 12), the corresponding lungs’ pressures phase space (top-right) and
dynamics over time (bottom)

6.1 COVID-19

The COVID-19 mortality statistics underline the relevance of deeper analysis on multi-factorial diseases in fighting
the pandemic [9]. Underlying morbidities such as cardiovascular disease, kidney disease, T2D or tumours have been
observed in patients with severe infection, especially among the elderly [10]. By affecting blood pressure regulation
pathways, SARS-CoV-2 infections may impair vasoprotection regulation endangering the whole circulatory system
with severe repercussions. By taking advantage of our composable framework, experimental results offer an overview
on how the combination of multiple diseases with SARS-CoV-2 may lead to acute conditions. Fig. 5 clearly shows how
the computational patient with comorbidities and SARS-CoV-2 has higher risk of pulmonary vessels’ deterioration.
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The combined effect of heparin and vitamin D can help in reducing blood pressure mean by making the blood more fluid.
However, they do not affect blood pressure variability determined by vessels’ rigidity. Hence, the risk in developing
cardiovascular diseases related to blood pressure variability may still be high despite treatments. Notably the results of
our experiments agree with hypotheses suggesting that healthy blood vessels protect children from serious effects of
COVID-19.

It is noteworthy that autopsy-based findings have demonstrated a variety of damages caused by COVID-19 infection,
among which extensive coagulopathy, acquired thrombophilia and endothelial cell death [83]. Here we consider the
sole effect on blood pressure.
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Figure 6: Comparing blood pressure effects of COVID-19 treatments in pulmonary vessels.

7 Discussion

The modularity and composability of different available mechanistic and phenomenological models presents the chal-
lenge to define a mathematical framework connecting different systems’ descriptions, their dynamics, and constraints.
Let’s imagine to put together a model based on ODEs and a model in terms of a discrete space discrete time Markov
chain. This has then to be done in the light of behavioral properties that can be sets of trajectories or measures on
the trajectory space (typically those learned from data with statistical methods). Cell-level models (using ODEs,
delay differential equations, DDE, or agents) need to be systematically scaled up to the tissue level; for the multiple
timescale problems, the challenge is to obtain a model order reduction, i.e. to abandon high dimensional bioengineering
systems in favour of simpler effective mathematical models. The tissue level could be modeled using PDE or cellular
Potts model which may provide better representation for detailed and heterogeneous cell-cell, cell-tissue, cell-matrix
interaction cases. Integrative models, could be made by single scale models, describing the biological process at
different characteristic space-time scales, and scale bridging models, which define how the component models are
coupled to each other. While at the tissue level, physical quantities usually vary across space and time, in a continuous
fashion, and can be thus represented using systems of PDE [84].

7.1 Emerging properties of variances from model composability

Many physiological variables have a circadian trend; sometimes also a seasonal one. For example blood pressure
decreases during sleep and shows a sharp uprise at the time of awakening. This early morning variation is often
concurrent with an increase of acute myocardial infarction, sudden cardiac death, and stroke [85]. Common clinical
parameters such as diastolic and systolic blood pressure, heart patterns, blood cell counts are usually evaluated as
averages. Little importance is given to higher moments such as variances during the day or during a longer interval of
time. The lack of continuous measures for most of the quantities has generated a medical practice that disregard of
unobserved or partially observed data. Some authors identified a disease and age-related loss of complex variability in
multiple physiologic processes including cardiovascular control, pulsatile hormone release, and ECG data [86, 87]. Our
composable model reveals interesting patterns, particularly fluctuations in blood pressure, particularly during COVID
acute infection when the diabetic model is coupled with the RAS and the cardiovascular models. We believe that the
use of extensive models could enable to understand concurrent patterns of alteration in different districts.
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7.2 How such computational patient model could be deployed and further developed

computational Patient will benefit from using machine learning and data analysis of large amount of data such for
instance that obtained from UK Biobank as modeling will have a truly catalytic effect in synergy with machine learning.
The computational patient model requires adequate artificial intelligence support to generate diagnosis and validate its
correctness. A decision-making process could be based on the development of a personalised statistics of changes in
health, end-stage disease, signs and symptoms (CHESS, [88]). This ideally would develop through monitoring of the
individualized response to therapeutic interventions, in addition to changes in risk profile. One aspect is a dedicated
CHESS scale based on all the variables and observable considered considered by the model(s) [88, 89]. It will act as
a personalised patient simulator and will draw temporal trajectories of disease and comorbidities progression. The
trajectories will change with drug regimes, medical intervention, and lifestyle changes.

Any data used will be anonymises or de-identified using ad hoc software (see for instance [90]) and we will follow the
FAIR principle (Findable, Accessible, Interoperable, Reusable) and the GRPD regulation. One meaningful approach to
extract useful indication is to use a clinical decision support system which incorporates medical experience, research
results and personal judgement [91]. We believe the computational patient models to be in a research only state and
therefore we do not make further integrations.

The future foreseen is that AI will assist our health and disease conditions in a more effective way than nowadays: a
medical check up will be supported by well-tuned artificial intelligence and patient-based modeling . At the clinical
level, computer-aided therapies and treatments will develop into intervention strategies undertaken under acute disease
conditions or due to external factors (infections) to contrast cascade effects. In non acute states, predictive inference
will propose prevention plans for comorbidity management, particularly in presence of multiple therapies.

Therefore this approach is meaningful in perspective of a computational medicine characterised by a close coupling
between bioinformatics, clinical measures and modeling prediction and perhaps remote patient monitoring.

8 Conclusion

computational scientists and bioengineers’ vision is a framework of methods and technologies that, once established,
will make it possible to investigate the human body as a whole. It calls for a total transformation in the way healthcare
currently works and is delivered to patients. Underpinning this transformation is substantial technological innovation
with a requirement for deeper trans-disciplinary research, improved IT infrastructure, better communication, large
volumes of high quality data and machine learning and modeling tools. Machine learning could be automatised (i.e.
autoML) and models should be modular so to be organised to answer specific and personalised medical questions.
Simulations are increasingly regarded as valuable tools in a number of aspects of medical practice including lifestyle
changes, surgical planning and medical interventions. The idea is that cross-modality data is obtained for the patient
and machine learning techniques estimate parameters to be input into modeling framework. We believe that a deeper
understanding and practice of modeling in medicine will produce better investigation of complex biological processes,
and even new ideas and better feedback into medicine. Finally, computational models are cheap and this will make
possible to predict drugs interaction and to make better use of generic drugs. In this sense the personalised model will
become a product associated with the drug.

8.1 Disclaimer

The computational tool has not been validated and should not be used for clinical purposes.
To enable code reuse, the Python code for the mathematical models including parameter values and documentation is
freely available under Apache 2.0 Public License from a GitHub repository [21]. Unless required by applicable law or
agreed to in writing, software is distributed on an "as is" basis, without warranties or conditions of any kind, either
express or implied.
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A Appendix

A.1 Website

Figure 7: Website dashboard for computational patients.
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A.2 Equations of the renin-angiotensin system

I =
100[DRUG]m

[DRUG]m50 + [DRUG]m
(16)

d[AGT ]

dt
=

production rate︷ ︸︸ ︷
kAGT −

renin-catalyzed conversion to ANG I︷ ︸︸ ︷(
aReninG+ bRenin

)
[AGT ]−

degradation︷ ︸︸ ︷
ln(2)

hAGT
[AGT ] (17)

d[Renin]

dt
=

production rate︷ ︸︸ ︷
ln 2

hRenin
[Renin]0

+

ANG II inhibition feedback︷ ︸︸ ︷
kf,sys[ANGII]0,sys

[ANGII]0

(
[ANGII]0 − [ANGII]

)(
1− ([ANGII]0 − [ANGII])

[ANGII]0,sys
fsys[ANGII]0

)

−

degradation︷ ︸︸ ︷
ln 2

hRenin
[Renin] (18)

d[ANGI]

dt
=

renin-catalyzed conversion of AGT︷ ︸︸ ︷(
aReninG+ bRenin

)
[AGT ] +

ANG II feedback on renin︷ ︸︸ ︷
kRenin

(
[Renin]− [Renin]0

)

−

ACE-catalyzed conversion to ANG II subject to inhibition︷ ︸︸ ︷(
aACEG+ bACE

)
[ANGI]

(
1− I

)
−

conversion to ANG-(1-7) and ANG-(1-9)︷ ︸︸ ︷(
kNEP + kACE2

)
[ANGI] −

−

degradation︷ ︸︸ ︷
ln2

hANGI
[ANGI] (19)

d[ANGII]

dt
=

ACE-catalyzed conversion to ANG II subject to inhibition︷ ︸︸ ︷(
aACEG+ bACE

)
[ANGI]

(
1− I

)

−

conversion to AT1R, AT2R, APA, and ANG-(1-7)︷ ︸︸ ︷(
kACE2 +

(
aAT1G+ bAT1

)
+ kAT2 + kAPA

)
[ANGII]

−

degradation︷ ︸︸ ︷
ln2

hANGII
[ANGII] (20)

A.3 Equations of the open-loop circulatory model

A.3.1 Four-chambered heart

t ≥ tHB(n+ 1)− PRint − offv =⇒



HRa =
1

HP/60

Tsa = Ts1a

√
Ts2

HRa/60

tPwave = tHB − PRint − offv
n = n+ 1

(21)
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t ≥ tHB(m+1)−offv =⇒



HRv =
1

HP/60

Tsv = Ts1v

√
Ts2

HRv/60

tRwave = tHB − offv
m = n

Vvar,i,vs0 =


Vi,vd0 Vi,v < Vi,vd0

Vi,vs0 Vi,v > EDViv

Vi,vs0 − Vi,vd0
Vi,v − Vi,vd0

EDVi,v − Vi,vd0
+ Vi,vd0 Vi,vd0 ≤ Vi,v ≤ EDViv

afcon2 = afcon
(22)

HR = HRv (23)

Emax,i,v = Ke,i,vEmax,i,v1 (24)

ta,REL = t− tPwave (25)

tv,REL = t− tRwave (26)

yi =



1− cosπ
ti,REL
Ts,i

2
0 ≤ ti,REL < Ts,i

1 + cos 2π
ti,REL − Ts,i

Ts,i
2

Ts,i ≤ ti,REL < 1.5Ts,i

0 ti,REL ≥ 1.5Ts,i

(27)

Ei,j = yj(Emax,i,j − Emin,i,j) + Emin,i,j (28)

Vi,a,0 = (1− ya)(Vi,a,d0 − Vi,a,s0) + Vi,a,s0 (29)

Vi,v,0 = (1− yv)(Vi,v,d0 − Vvar,i,vs0) + Vvar,i,vs0 (30)

ψ(v) = Kxp
1

ev/Kxv − 1
(31)

Pi,a = Ei,a(Vi,a − Vi,a0)− ψ(Vi,a) (32)

Pi,v = Ei,v(Vi,v − Vi,v0)afcon2 − ψ(Vi,v) (33)

Fi,a =


Pi,a − Pi,v

Ri,a
Pi,a > Pi,v

0 Pi,a ≤ Pi,v
(34)
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Fr,v =


Pr,v − Ppap

Rr,v
Pr,v > Ppap

0 Pr,v ≤ Ppap
(35)

Fl,v =


Pl,v − Paop

Rl,v
Pl,v > Paop

0 Pl,v ≤ Paop
(36)

dVr,a
dt

= (37)

dVr,a
dt

=
Fvc + Fcorvn

Fr,a
(38)

dVr,v
dt

=
Fr,a
Frv

(39)

dVl,a
dt

=
Fpv
Fl,a

(40)

dVl,v
dt

=
Fl,a
Fl,v

(41)

A.3.2 Systemic circulation

Pvc =

{
K1(Vvc − Vvc0)− ψ(Vvc) Vvc > Vvc0

D2 +K2e
Vvc/Vmin,vc − ψ(Vvc) Vvc ≤ Vvc0

(42)

COmod = Frv,sm (43)

SV =
COmod
HR

(44)

ABPshift = ABPmeas(t− offv) (45)

Kv = Kv1Ksv (46)

MAPmod =

Rcrb

[
RtaodAOFmod −RtaodFaod +

Vaod − Vaod0

Caod
− ψ(Vaod)

]
+ PvcRtaod

Rcrb +Rtaod
(47)

Paod = ABPshift (48)

Psap =
Vsap − Vsap0

Csap
− ψ(Vsap) (49)

Psa,a = Kc log10

[
Vsa − Vsa0

Do
+ 1

]
(50)

Psa,p = Kp1e
τp(Vsa−Vsa0) +Kp2(Vsa − Vsa0)

2 (51)
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Psa = fvasoPsa,a + (1− fvaso)Psa,p (52)

Psc =
Vsc − V sc0

Csc
− ψ(Vsc) (53)

Psv = −Kv log10

[
Vmax,sv
Vsv

− 0.99

]
(54)

Rsa = Kr

(
e4fvaso +

V 2
sa,max

V 2
sa

)
+Rsa0 (55)

Rvc = KR

V 2
max,vc

V 2
vc

+R0 (56)

Fcrb =
MAPmod − Pvc

Rcrb
(57)

Fsap =
Psap − Psa

Rsap
(58)

Fsa =
Psa − Psc
Rsa

(59)

Fsc =
Psc − Psv
Rsc

(60)

Fsv =
Psv − Pvc
Rsv

(61)

Fvc =
Pvc − Pra

Rvc
(62)

dVaop
dt

=

Paop −
Vaop − Vaop0

Caop
Rtaop

(63)

dVaod
dt

= AOFmod − Faod − Fcrb (64)

dVsa
dt

= Fsap − Fsa (65)

dVsap
dt

= Faod − Fsap (66)

dVsc
dt

= Fsa − Fsc (67)

dVsv
dt

= Fsc − Fsv (68)

dVvc
dt

= Fsv + Fcrb − Fvc (69)
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dAOFmod
dt

= (MAPmeas −MAPmod)
Kcomap

60
(70)

dFrv,sm
dt

=
Frv − Frv,sm

τco
(71)

dFaod
dt

=
MAPmod − FaodRaod − Psap

Laod
(72)

dPpaop
dt

=
Flv −

dVaop
dt
− Faop − Fcorepi

Ccorepi
(73)

dMAPmeas
dt

=
ABPshift −MAPmeas

τMAP
(74)

dCOmea
dt

=
PAFmeas − COmea

τco
(75)

dABPfol
dt

=
ABPshift −ABPfol

τABP
(76)

A.3.3 Pulmonary circulation

Ppap =



Ppap1 =

RtpapPrv −RrvFpapRtpap +

(
Rrv

Vpap − Vpap0
Cpap

− ψ(Vpap)

)
Rtpap +Rrv

Prv > Ppap1

Ppap2 =

−RrvFpapRtpap +

(
Rrv

Vpap − Vpap0
Cpap

− ψ(Vpap)

)
Rrv

Prv ≤ Ppap1

(77)

Ppad = FpapRtpad − FpadRtpad +
Vpad − Vpad0

Cpad
− ψ(Vpad) (78)

Vp,i =
Vp,i − Vp,i,0

Cp,i
− ψ(Vp,i) (79)

Fps =
Ppa − Ppv

Rps
(80)

Fpa =
Ppa − Ppc
Rpa

(81)

Fpc =
Ppc − Ppv

Rpc
(82)

Fpv =
Ppv − Ppa

Rpv
(83)

dFpap
dt

=
Ppap − Ppad − FpapRpap

Lpap
(84)

dFpad
dt

=
Ppad − Ppa − FpadRpad

Lpad
(85)
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dVpad
dt

= Fpap − Fpad (86)

dVpap
dt

= Frv − Fpap (87)

dVpa
dt

= Fpad − Fps − Fpa (88)

dVpc
dt

= Fpa − Fpc (89)

dVpv
dt

= Fpc + Fps − Fpv (90)

A.3.4 Coronary circulation

Pcorepi = Paop (91)

Pcorintra =
Vcorintra − Vcorintra0

Ccorintra
− ψ(V) (92)

Pcorcap =
Vcorcap − Vcorcap0

Ccorcap
− ψ(Vcorcap) (93)

Pcorvn =
Vcorvn − Vcorvn0

Ccorvn
− ψ(Vcorvn) (94)

Pim =

⌊
Plv
2

⌋
(95)

Pcorintrac = Pcorintra + Pim (96)

Pcorcapc = Pcorcap + Pim (97)

Pcorvnc = Pcorvn (98)

Fcorepi =
Pcorepi − Pcorintrac

Rcorepi
(99)

Fcorintra =
Pcorintrac − Pcorcapc

Rcorintra
(100)

Fcorcap =
Pcorcapc − Pcorvnc

Rcorcap
(101)

Fcorvn =
Pcorvnc − Pra

Rcorvn
(102)

dVcorepi
dt

= Flv −
dVvaop
dt

− Faop − Fcorepi (103)
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dVcorintra
dt

= Fcorepi − Fcorintra (104)

dVcorcap
dt

= Fcorintra − Fcorcap (105)

dVcorvn
dt

= Fcorcap − Fcorvn (106)

A.3.5 Baroreceptor

bvaso = 1− avaso (107)

fvaso = avaso +
bvaso

eτvaso(Nvaso−No,vaso)) + 1
(108)

Nbr,t =
dNbr
dt

(109)

dNbr,t
dt

=

−(a2 + a)Nbr,t −Nbr +K

(
ABPshift + a1

dABPfol
dt

)
a2a

(110)

dNi
dt

=


−Ni +KiNbr(t− li)

Ti
t− tHB(0) > li

0 t− tHB(0) ≤ li
(111)

A.3.6 Blood volumes

Vcorcic = Vcorepi + Vcorintra + Vcorcap + Vcorvn (112)

Vheart = Vra + Vrv + Vla + Vlv + Vcorcic (113)

Vsysart = Vaop + Vaod + Vsap + Vsa (114)

Vsysven = Vsv + Vvc (115)

Vpulart = Vpap + Vpad + Vpa (116)

TBV = Vheart + Vsysart + Vsc + Vsysven + Vpulart + Vpc + Vpv (117)
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A.4 Parameters of the renin-angiotensin system

Table 3: Pharmacokinetic parameters

Parameter NRF IRF Units Sources Description

ka 1.907 1.645 h−1 [55, 92] absorption rate constant

ke 1.33× 10−1 3.45× 10−2 h−1 [55, 92] elimination rate constant

V/F 7.09× 104 1.07× 105 mL [55, 92] ratio of the volume of distribution to the fraction of the drug absorbed

Table 4: Pharmacodynamic parameters

Parameter Value Units Sources Description

kAGT 2.27× 106 nmol/L/h [57, 14] constant production rate of AGT

kRenin 6.44× 104 h−1 [55, 14] ANG-I production rate due to renin

kNEP 0.583 h−1 [57, 14] NEP-catalyzed conversion rate from ANG-I to ANG-(1-7)

kAT2 25.1 h−1 [57, 14] rate parameter for binding of ANG II to AT1R

kAPA 43.6 h−1 [57, 14] APA-catalyzed conversion rate from ANG-II to ANG-III

hAGT 10.0 h [58, 57, 14] AGT half-life degradation rate

hRenin 0.250 h [57, 14] renin half-life degradation rate

hANGI 1.72× 10−4 h [58, 57, 14] ANG-I half-life degradation rate

hANGII 5× 10−3 h [58, 57, 14] ANG-II half-life degradation rate

[Drug]50 2.20 ng/mL [92, 57, 14] drug concentration yielding 50% inhibition

m 0.99 - [92, 57, 14] degree of sigmoidicity of the Hill function

aRenin 5.47× 10−4 L/mmol/h [57, 14] slope of the linear dependence of renin from glucose

bRenin 6.16× 10−11 h−1 [57, 14] intercept of the linear dependence of renin from glucose

aACE 0.889 L/mmol/h [57, 14] slope of the linear dependence of ACE from glucose

bACE 163 h−1 [57, 14] intercept of the linear dependence of ACE from glucose

aAT1 2.55 L/mmol/h [57, 14] slope of the linear dependence of AT1R from glucose

bAT1 464 h−1 [57, 14] intercept of the linear dependence of AT1R from glucose

kf,sys 6.25× 10−2 h−1 [55, 14] ANG-II feedback parameter on renin
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Table 4 continued from previous page

Parameter Value Units Sources Description

fsys 0.397 nmol/L [55, 14] ANG-II feedback parameter on renin

[AGT ]0 1.70× 107 nmol/L [57, 14] AGT initial concentration

[Renin]0 2.06× 10−4 nmol/L [55, 14] renin initial concentration

[ANGI]0 271 nmol/L [57, 14] ANG-I initial concentration

[ANGII]0 21.0 nmol/L [57, 14] ANG-II initial concentration

[ANGII]0,sysNRF 1.65× 10−2 nmol/L [55, 14] systemic ANG-II initial concentration for normal renal individuals

[ANGII]0,sysIRF 2.05× 10−2 nmol/L [55, 14] systemic ANG-II initial concentration for impaired renal individuals

hANG17 0.5 h [58] ANG-17 half-life degradation rate

[ANG17]0 9.858 nmol/L [93] ANG-17 initial concentration

hAT1R 0.2 h [58] AT1R half-life degradation rate

[AT1R]0 16.2 nmol/L [93] AT1R initial concentration

hAT2R 0.2 h [58] AT2R half-life degradation rate

[AT2R]0 5.4 nmol/L [93] AT2R initial concentration

kACE2,0 0.385 h−1 [57, 14] ACE-catalyzed conversion rate from ANG-II to ANG-(1-7)

sI 0.1 h−1L/nmol - severity of SARS-CoV-2 infection

eAI 0.347 - - efficiency of anti-inflammatory pathways

A.5 Parameters of the diabetic model

Table 5: Diabetic parameters

Parameter Value Units Sources Description

k 432 d−1 [94] combined insulin uptake at the liver, kidneys, and insulin receptors

α 20000 mg2dl−2 [95] glucose concentration yielding 50% of insulin secretion

σ 43.2 µU ml−1d−1 [96, 95, 94] maximal rate secretion of insulin by β cells

R0 864 mg dl−1d−1 [96, 97] net rate of production at zero glucose

R1 1 ml dl−1 g−1 - net rate of glucose increase due to meals
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Table 5 continued from previous page

Parameter Value Units Sources Description

R2 0.1 ml dl−1 kcal−1 - net rate of glucose consumption due to workouts

EG0 0.44 d−1 [96, 97] total glucose effectiveness at zero insulin

SI (normal) 1.62 ml µU−1d−1 [97] normal insulin sensitivity

SI (diabetic) 0.52 ml µU−1d−1 [97] diabetic insulin sensitivity

r0 0.06 d−1 [96, 98, 97] death rate at zero glucose

r1 0.00084 mg−1dl d−1 [96, 98, 97] I-order coefficient for β cell replication

r2 0.0000024 mg−2dl d−1 [96, 98, 97] II-order coefficient for β cell replication

i0 87 - [13] insulin resistance self-inhibition rate

m 2 - [13] insulin resistance progression rate due to pro-inflammatory cytokines

q 0.017 ml/µU [13] insulin resistance progression rate due to insulin concentration

I0 13.59 µU/ml [13] initial insulin concentration

G0 100 ml/dl [13] initial glucose concentration

βf,0 407.73 - [13] number of functional β-cells

IR,0 0.359 - - initial insulin resistance

A.6 Parameters of the stiffness model

Table 6: Stiffness parameters

Parameter Value Units Sources Description

kSARS 0.15 h inflammation rate due to SARS-CoV-2

kD 0.001 mL/ng inflammation rate due to ACEi surplus

kG 0.1 L/mmol inflammation rate due to glucose surplus

keff (healthy state) 0.035 - anti-inflammatory response rate

keff (during infection) 0.693 - anti-inflammatory response rate

β1 0.006 - compliance reduction rate due to ageing

β0 1.2 - compliance reduction intercept due to ageing
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Table 6 continued from previous page

Parameter Value Units Description

IR0 0.385 - inflammatory response initial condition

βh 0.0008 mmHg mL U−1 heparin impact on blood pressure

βD 0.05 mmHg mL ng−1 vitamin D impact on blood pressure

[heparin]0 5000 U ml−1 initial heparin dose for intra venous continuous infusion treatment

[D]0 30 ng mL−1 vitamin D recommended concentration

A.7 Parameters of the open-loop circulatory model

Parameter Value Units Description

Ts1v 0.349 sec Scaler to set ventricular systolic fraction of heart cycle

Ts1a 0.2 sec Scaler to set atrial systolic fraction of heart cycle

Ts2 1 hz Unit balance scalar for Tsa and Tsv functions

offv 0.0263 sec Parameter to match model and measured end-diastolic ABP

V lvd0 71.816 ml Unstressed end-diastolic left ventricle volume

V lvs0 23.699 ml Unstressed end-systolic left ventricle volume

V rvd0 102.881 ml Unstressed end-diastolic right ventricle volume

V rvs0 53.498 ml Unstressed end-systolic right ventricle volume

V lad0 70 ml Unstressed end-diastolic left atrium volume

V las0 40 ml Unstressed end-systolic left atrium volume

V rad0 60 ml Unstressed end-diastolic right atrium volume

V ras0 53 ml Unstressed end-systolic right atrium volume

Rra 0.001 mmHg s ml−1 Tricuspid valve resistance

Rla 0.001 mmHg s ml−2 Mitral valve resistance

Rlv 0.0001 mmHg s ml−3 Aortic valve resistance

Rrv 0.0001 mmHg s ml−4 Pulmonary valve resistance

32

 . 
C

C
-B

Y
 4.0 International license

It is m
ade available under a 
 is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
(w

h
ich

 w
as n

o
t certified

 b
y p

eer review
)

T
he copyright holder for this preprint 

this version posted July 20, 2020. 
; 

https://doi.org/10.1101/2020.06.10.20127183
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2020.06.10.20127183
http://creativecommons.org/licenses/by/4.0/


A
P

R
E

P
R

IN
T

-
JU

LY
18,2020

Table 7 continued from previous page

Parameter Value Units Description

PRint 0.12 sec Difference in atrial, venticular activation times

KElv 1 Scaling factor for maximum left ventricular elastance

KErv 1 Scaling factor for maximum right ventricular elastance

Emaxlv1 5.4 mmHg/ml Maximum elastance of first left ventricle component

Eminlv 0.09 mmHg/ml Minimum elastance of first left ventricle component

Emaxrv1 0.53 mmHg/ml Maximum elastance of first right ventricle component

Eminrv 0.0343 mmHg/ml Minimum elastance of first right ventricle component

EDV LV 125.993 ml

EDV RV 175.865 ml

Emaxra 0.13 mmHg/ml Maximum elastance right ventricle

Eminra 0.085 mmHg/ml Minimum elastance left ventricle

Emaxla 0.299 mmHg/ml Maximum elastance right ventricle

Eminla 0.185 mmHg/ml Minimum elastance left ventricle

KCOMAP 3 L/mmHg/min2

Raop 0.0001 mmHg sec ml−1 Proximal aortic resistance

Rtaop 0.02 mmHg sec ml−1 Transmural proximal aortic resistance

Rcrb 6.8284 mmHg sec ml−1 Cerebral circulation resistance

Raod 0.0129 mmHg sec ml−1 Distal aortic resistance

Rtaod 1 mmHg sec ml−1 Transmural distal aortic resistance

Rsap 0.003 mmHg sec ml−1 Systemic arteriolar resistance

Rsc 0.155 mmHg sec ml−1 Systemic capillaries resistance

Rsv 0.138 mmHg sec ml−1 Systemic veins resistance

Caop 0.263 ml mmHg−1 Aortic proximal compliance

Caod 0.639 ml mmHg−1 Aortic distal compliance

Csap 1.482 ml mmHg−1 Systemic arterioles compliance

Csc 5.767 ml mmHg−1 Systemic capillaries compliance
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Table 7 continued from previous page

Parameter Value Units Description

V aop0 9.520 ml Proximal aorta unstressed volume

V aod0 23.11 ml Distal aorta unstressed volume

V sap0 52.94 ml Systemic arteries unstressed volume

V sc0 71.02 ml Systemic capillaries unstressed volume

Laop 1e− 05 mmHg sec2 ml−1 Proximal aorta intertance

Laod 2e− 05 mmHg sec2 ml−1 Distal aorta inertance

Kc 497.785 mmHg Active vasomotor tone scaling parameter for systemic arterial pressure

Do 50 ml Active vasomotor tone volume parameter for systemic arterial pressure

V sa0 485.762 ml Minimal volume of systemic arteries

V sa_max 577.711 ml Maximal luminal volume of systemic arteries

Kp1 0.0299 mmHg Passive vasomotor tone scaling parameter for systemic arterial pressure

Kp2 0.05 mmHg ml−2 Passive vasomotor tone scaling parameter for systemic arterial pressure

Kr 0.01 mmHg sec ml−1 Pressure scaling constant for systemic arterial resistance

Rsa0 0.581 mmHg sec/ml Offset parameter for systemic arteriolar resistance

tau_p 0.1 ml−1 Passive vasomotor tone constant for systemic arterial pressure

Ksv 0.74 Scaling factor used to optimize systemic venous pressure-volume relationship

Kv1 30.21 mmHg Scaling factor for systemic venous pressure

V max_sv 3379.55 ml Maximal volume of lumped systemic veins

D2 −5 mmHg Offsetting constant for partially collapsed Vena cava pressure

K1 0.046 mmHg ml−1 Scaling factor for Vena cava PV relationship

K2 0.374 mmHg Scaling factor for partially collapsed Vena cava pressure

KR 0.001 mmHg sec ml−1 Scaling factor for Vena cava resistance

R0 0.025 mmHg sec ml−1 Vena cava resistance offset parameter

V vc0 129.649 ml Unstressed volume of Vena cava

V max_vc 350.53 ml Maximum volume of Vena cava

V min_vc 50.01 ml Minimum volume of Vena cava
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Table 7 continued from previous page

Parameter Value Units Description

tauCO 15 sec Cardiac output equation time constant

Kxp 2 mmHg P-V curve shaping parameter

Kxv 8 ml P-V curve shaping parameter

Kxv1 1 ml P-V curve shaping parameter

Kxp1 1 mmHg P-V curve shaping parameter

tauMAP 2 sec Time constant for mean arterial pressure ODE

tauABP 0.001 sec Time constant for ABP follower

Rtpap 0.1 mmHg sec ml−1 Proximal pulmonary arterial transmural resistance

Rtpad 0.2 mmHg sec ml−1 Distal pulmonary arterial transmural resistance

Rpap 0.0001 mmHg sec ml−1 Proximal pulmonary resistance

Rpad 0.0299 mmHg sec ml−1 Distal proximal pulmonary resistance

Rps 4.333 mmHg sec ml−1 Pulmonary shunt resistance

Rpa 0.057 mmHg sec ml−1 Pulmonary arterioles resistance

Rpc 0.032 mmHg sec ml−1 Pulmonary capillaries resistance

Rpv 0.0001 mmHg sec ml−1 Pulmonary veins resistance

Cpap 1.445 ml mmHg−1 Proximal pulmonary arterial compliance

Cpad 2.531 ml mmHg−1 Distal pulmonary arterial compliance

Cpa 3.102 ml mmHg−1 Pulmonary arterioles compliance

Cpc 9.117 ml mmHg−1 Pulmonary capillaries compliance

Cpv 52.267 ml mmHg−1 Pulmonary veins compliance

V pap0 9.81 ml Proximal pulmonary artery unstressed volume

V pad0 17.16 ml Distal pulmonary artery unstressed volume

V pa0 17.16 ml Small pulmonary arteries unstressed volume

V pc0 29.42 ml Pulmonary capillaries unstressed volume

V pv0 29.597 ml Pulmonary veins unstressed volume

Lpap 0.00018 mmHg sec2 ml−1 Proximal arterial inertance
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Table 7 continued from previous page

Parameter Value Units Description

Lpad 0.00019 mmHg sec2 ml−1 Distal pulmonary artery inertance

Rcorepi 5.285 s ml−1mmHg Proximal epicardial arteries resistance

Rcorintra 10.147 s ml−1mmHg Distal epicardial arteries resistance

Rcorcap 4.228 s ml−1mmHg Coronary capillaries resistance

Rcorvn 1.48 s ml−1mmHg Small coronary veins resistance

Ccorepi 0.074 ml/mmHg Compliance of proximal epicardial arteries

Ccorintra 0.134 ml/mmHg Compliance of distal epicardial arteries

Ccorcap 0.94 ml/mmHg Compliance of coronary capillaries

Ccorvn 2.45 ml/mmHg Compliance of small coronary veins

V corepi0 2.69 ml Epicardial arteries unstressed volume

V corintra0 2.685 ml Intramyocardial arteries unstressed volume

V corcap0 2.523 ml Coronary capillaries unstressed volume

V corvn0 2.493 ml Coronary veins unstressed volume

a 0.001 sec Time constant for baroreceptor firing rate

a1 0.036 sec Time constant for baroreceptor firing rate

a2 0.0018 sec Time constant for baroreceptor firing rate

K 0.991 sec−1 mmHg−1 Baroreceptor gain (used to account for units)

K_con 1 CNS gain for contractility control

T_con 10 sec CNS time parameter for contractility control

l_con 3 sec CNS time delay for contractility control

a_con 0.299 Time constant for efferent contractility firing

b_con 0.699 Time constant for efferent sympathetic contractility firing

tau_con 0.04 sec Time parameter for efferent sympathetic contractility firing

No_con 110 sec−1 Frequency parameter for efferent sympathetic contractility firing

K_vaso 1 CNS gain for vasomotor tone control

T_vaso 6 sec CNS time parameter for vasomotor tone control
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Table 7 continued from previous page

Parameter Value Units Description

l_vaso 3 sec CNS time delay for vasomotor tone control

a_vaso −0.466 Time constant for efferent vasomotor tone firing

tau_vaso 0.04 sec Time parameter for efferent vasomotor tone firing

No_vaso 110 sec−1 Frequency parameter for efferent vasomotor tone firing

amin −2.806 Contractility control offset

bmin 0.699 Contractility control offset

Ka 5 Contractility control scaling factor

Kb 0.5 Contractility control scaling factor
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