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Abstract

Explainable artificial intelligence has rapidly emerged since
lawmakers have started requiring interpretable models for
safety-critical domains. Concept-based neural networks have
arisen as explainable-by-design methods as they leverage
human-understandable symbols (i.e. concepts) to predict
class memberships. However, most of these approaches fo-
cus on the identification of the most relevant concepts but do
not provide concise, formal explanations of how such con-
cepts are leveraged by the classifier to make predictions. In
this paper, we propose a novel end-to-end differentiable ap-
proach enabling the extraction of logic explanations from
neural networks using the formalism of First-Order Logic.
The method relies on an entropy-based criterion which au-
tomatically identifies the most relevant concepts. We con-
sider four different case studies to demonstrate that: (i) this
entropy-based criterion enables the distillation of concise
logic explanations in safety-critical domains from clinical
data to computer vision; (ii) the proposed approach outper-
forms state-of-the-art white-box models in terms of classifi-
cation accuracy and matches black box performances.

1 Introduction
The lack of transparency in the decision process of some
machine learning models, such as neural networks, limits
their application in many safety-critical domains (EUGDPR
2017; Goddard 2017). For this reason, explainable artificial
intelligence (XAI) research has focused either on explaining
black box decisions (Zilke, Loza Mencı́a, and Janssen 2016;
Ying et al. 2019; Ciravegna et al. 2020a; Arrieta et al. 2020)
or on developing machine learning models interpretable by
design (Schmidt and Lipson 2009; Letham et al. 2015; Cran-
mer et al. 2019; Molnar 2020). However, while interpretable
models engender trust in their predictions (Doshi-Velez and
Kim 2017, 2018; Ahmad, Eckert, and Teredesai 2018; Rudin
et al. 2021), black box models, such as neural networks,
are the ones that provide state-of-the-art task performances
(Battaglia et al. 2018; Devlin et al. 2018; Dosovitskiy et al.
2020; Xie et al. 2020). Research to address this imbalance is
needed for the deployment of cutting-edge technologies.

Most techniques explaining black boxes focus on finding
or ranking the most relevant features used by the model to
make predictions (Simonyan, Vedaldi, and Zisserman 2013;
Zeiler and Fergus 2014; Ribeiro, Singh, and Guestrin 2016b;

Lundberg and Lee 2017; Selvaraju et al. 2017). Such feature-
scoring methods are very efficient and widely used, but they
cannot explain how neural networks compose such features
to make predictions (Kindermans et al. 2019; Kim et al.
2018b; Alvarez-Melis and Jaakkola 2018). In addition, a
key issue of most explaining methods is that explanations
are given in terms of input features (e.g. pixel intensities)
that do not correspond to high-level categories that humans
can easily understand (Kim et al. 2018b; Su, Vargas, and
Sakurai 2019). To overcome this issue, concept-based ap-
proaches have become increasingly popular as they provide
explanations in terms of human-understandable categories
(i.e. the concepts) rather than raw features (Kim et al. 2018b;
Ghorbani et al. 2019; Koh et al. 2020; Chen, Bei, and Rudin
2020). However, fewer approaches are able to explain how
such concepts are leveraged by the classifier and even fewer
provide concise explanations whose validity can be assessed
quantitatively (Ribeiro, Singh, and Guestrin 2016b; Guidotti
et al. 2018; Das and Rad 2020).

Contributions. In this paper, we first propose an entropy-
based layer (Sec. 3.1) that enables the implementation of
concept-based neural networks, providing First-Order Logic
explanations (Fig. 1). The proposed approach is not just a
post-hoc method, but an explainable by design approach as it
embeds additional constraints both in the architecture and in
the learning process, to allow the emergence of simple logic
explanations. This point of view is in contrast with post-
hoc methods, which generally do not impose any constraint
on classifiers: After the training is completed, the post-hoc
method kicks in. Second, we describe how to interpret the
predictions of the proposed neural model to distill logic ex-
planations for individual observations and for a whole target
class (Sec. 3.3). We demonstrate how the proposed approach
provides high-quality explanations according to six quanti-
tative metrics while matching black-box and outperforming
state-of-the-art white-box models (Sec. 4) in terms of clas-
sification accuracy on four case studies (Sec. 5). Finally, we
share an implementation of the entropy layer, with extensive
documentation and all the experiments in the public reposi-
tory: https://github.com/pietrobarbiero/entropy-lens.

2 Background
Classification is the problem of identifying a set of cate-
gories an observation belongs to. We indicate with Y ⊂
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Figure 1: The proposed pipeline on one example from the CUB dataset. The neural network f : C 7→ Y maps concepts onto
target classes and provide concise logic explanations (yellow – arguments of predicates are dropped for simplicity) of its own
decision process. When the input data is non-interpretable (as pixels intensities), a classifier g : X 7→ C maps inputs to concepts.

{0, 1}r the space of binary encoded targets in a problem with
r categories. Concept-based classifiers f are a family of ma-
chine learning models predicting class memberships from
the activation scores of k human-understandable categories,
f : C 7→ Y , where C ⊂ [0, 1]k (see Fig. 1). Concept-based
classifiers improve human understanding as their input and
output spaces consists of interpretable symbols. When ob-
servations are represented in terms of non-interpretable in-
put features belonging to X ⊂ Rd (such as pixels intensi-
ties), a “concept decoder” g is used to map the input into
a concept-based space, g : X 7→ C (see Fig. 1). Other-
wise, they are simply rescaled from the unbounded space
Rd into the unit interval [0, 1]k, such that input features can
be treated as logic predicates.

In the recent literature, the most similar method related
to the proposed approach is the ψ network proposed by
Ciravegna et al. (Ciravegna et al. 2020a,b), an end-to-end
differentiable concept-based classifier explaining its own de-
cision process. The ψ network leverages the intermediate
symbolic layer whose output belongs to C to distill First-
Order Logic formulas, representing the learned map from C
to Y . The model consists of a sequence of fully connected
layers with sigmoid activations only. An L1-regularization
and a strong pruning strategy is applied to each layer of
weights in order to allow the computation of logic formulas
representing the activation of each node. Such constraints,
however, limit the learning capacity of the network and im-
pair the classification accuracy, making standard white-box
models, such as decision trees, more attractive.

3 Entropy-based Logic Explanations of
Neural Networks

The key contribution of this paper is a novel linear layer en-
abling entropy-based logic explanations of neural networks
(see Fig. 2 and Fig. 3). The layer input belongs to the concept
space C and the outcomes of the layer computations are: (i)
the embeddings hi (as any linear layer), (ii) a truth table T i
explaining how the network leveraged concepts to make pre-
dictions for the i-th target class. Each class of the problem
requires an independent entropy-based layer, as emphasized
by the superscript i. For ease of reading and without loss of
generality, all the following descriptions concern inference
for a single observation (corresponding to the concept tuple
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Figure 2: For each class i, the network leverages one “head”
of the entropy-based linear layer (green) as first layer, and it
provides: the class membership predictions f i and the truth
table T i (Eq. 6) to distill FOL explanations (yellow, top).

c ∈ C) and a neural network f i predicting the class member-
ships for the i-th class of the problem. For multi-class prob-
lems, multiple “heads” of this layer are instantiated, with one
“head” per target class (see Sec. 5), and the hidden layers of
the class-specific networks could be eventually shared.

3.1 Entropy-based linear layer
When humans compare a set of hypotheses outlining the
same outcomes, they tend to have an implicit bias towards
the simplest ones as outlined in philosophy (Soklakov 2002;
Rathmanner and Hutter 2011), psychology (Miller 1956;
Cowan 2001), and decision making (Simon 1956, 1957,
1979). The proposed entropy-based approach encodes this
inductive bias in an end-to-end differentiable model. The
purpose of the entropy-based linear layer is to encourage the
neural model to pick a limited subset of input concepts, al-
lowing it to provide concise explanations of its predictions.
The learnable parameters of the layer are the usual weight
matrix W and bias vector b. In the following, the forward
pass is described by the operations going from Eq. 1 to Eq.
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Figure 3: A detailed view on one “head” of the entropy-
based linear layer for the 1-st class, emphasizing the role of
the k-th input concept as example: (i) the scalar γ1k (Eq. 1) is
computed from the set of weights connecting the k-th input
concept to the output neurons of the entropy-based layer;
(ii) the relative importance of each concept is summarized
by the categorical distribution α1 (Eq. 2); (iii) rescaled rel-
evance scores α̃1 drop irrelevant input concepts out (Eq. 3);
(iv) hidden states h1 (Eq. 4) and Boolean-like concepts ĉ1
(Eq. 5) are provided as outputs of the entropy-based layer.

4 while the generation of the truth tables from which expla-
nations are extracted is formalized by Eq. 5 and Eq. 6.

The relevance of each input concept can be summarized
in a first approximation by a measure that depends on the
values of the weights connecting such concept to the upper
network. In the case of network f i (i.e. predicting the i-th
class) and of the j-th input concept, we indicate withW i

j the
vector of weights departing from the j-th input (see Fig. 3),
and we introduce

γij = ||W i
j ||1 . (1)

The higher γij , the higher the relevance of the concept j for
the network f i. In the limit case (γij → 0) the model f i
drops the j-th concept out. To select only few relevant con-
cepts for each target class, concepts are set up to compete
against each other. To this aim, the relative importance of
each concept to the i-th class is summarized in the categor-
ical distribution αi, composed of coefficients αij ∈ [0, 1]

(with
∑
j α

i
j = 1), modeled by the softmax function:

αij =
eγ

i
j/τ∑k

l=1 e
γi
l/τ

(2)

where τ ∈ R+ is a user-defined temperature parameter to
tune the softmax function. For a given set of γij , when using
high temperature values (τ → ∞) all concepts have nearly
the same relevance. For low temperatures values (τ → 0),
the probability of the most relevant concept tends to αij ≈ 1,
while it becomes αik ≈ 0, k 6= j, for all other concepts. For
further details on the impact of τ on the model predictions
and explanations, see Appendix A.6. As the probability dis-
tribution αi highlights the most relevant concepts, this infor-
mation is directly fed back to the input, weighting concepts

by the estimated importance. To avoid numerical cancella-
tion due to values in αi close to zero, especially when the
input dimensionality is large, we replace αi with its normal-
ized instance α̃i, still in [0, 1]k, and each input sample c ∈ C
is modulated by this estimated importance,

c̃i = c� α̃i with α̃ij =
αij

maxu αiu
, (3)

where� denotes the Hadamard (element-wise) product. The
highest value in α̃i is always 1 (i.e. maxj α̃

i
j = 1) and it

corresponds to the most relevant concept. The embeddings
hi are computed as in any linear layer by means of the affine
transformation:

hi = W ic̃i + bi. (4)

Whenever α̃ij → 0, the input c̃ij → 0. This means that the
corresponding concept tends to be dropped out and the net-
work f i will learn to predict the i-th class without relying
on the j-th concept.

In order to get logic explanations, the proposed linear
layer generates the truth table T i formally representing the
behaviour of the neural network in terms of Boolean-like
representations of the input concepts. In detail, we indicate
with c̄ the Boolean interpretation of the input tuple c ∈ C,
while µi ∈ {0, 1}k is the binary mask associated to α̃i.
To encode the inductive human bias towards simple expla-
nations (Miller 1956; Cowan 2001; Ma, Husain, and Bays
2014), the mask µi is used to generate the binary concept
tuple ĉi, dropping the least relevant concepts out of c,

ĉi = ξ(c̄, µi) with µi = Iα̃i≥ε and c̄ = Ic≥ε, (5)

where Iz≥ε denotes the indicator function that is 1 for all
the components of vector z being ≥ ε and 0 otherwise (con-
sidering the unbiased case, we set ε = 0.5). The function ξ
returns the vector with the components of c̄ that correspond
to 1’s in µi (i.e. it sub-selects the data in c̄). As a results, ĉi

belongs to a space Ĉi of mi Boolean features, with mi<k
due to the effects of the subselection procedure.

The truth table T i is a particular way of representing the
behaviour of network f i based on the outcomes of process-
ing multiple input samples collected in a generic dataset C.
As the truth table involves Boolean data, we denote with
Ĉi the set with the Boolean-like representations of the sam-
ples in C computed by ξ, Eq. 5. We also introduce f̄ i(c)
as the Boolean-like representation of the network output,
f̄ i(c) = Ifi(c)≥ε. The truth table T i is obtained by stacking
data of Ĉi into a 2D matrix Ĉi (row-wise), and concatenat-
ing the result with the column vector f̄ i whose elements are
f̄ i(c), c ∈ C, that we summarize as

T i =
(
Ĉi
∣∣∣∣∣∣ f̄ i). (6)

To be precise, any T i is more like an empirical truth table
than a classic one corresponding to an n-ary boolean func-
tion, indeed T i can have repeated rows and missing Boolean
tuple entries. However, T i can be used to generate logic ex-
planations in the same way, as we will explain in Sec. 3.3.



3.2 Loss function
The entropy of the probability distribution αi (Eq. 2),

H(αi) = −
k∑
j=1

αij logαij (7)

is minimized when a single αij is one, thus representing the
extreme case in which only one concept matters, while it is
maximum when all concepts are equally important. WhenH
is jointly minimized with the usual loss function for super-
vised learning L(f, y) (being y the target labels–we used the
cross-entropy in our experiments), it allows the model to find
a trade off between fitting quality and a parsimonious activa-
tion of the concepts, allowing each network f i to predict i-th
class memberships using few relevant concepts only. Over-
all, the loss function to train the network f is defined as,

L(f, y, α1, . . . , αr) = L(f, y) + λ

r∑
i=1

H(αi), (8)

where λ>0 is the hyperparameter used to balance the rela-
tive importance of low-entropy solutions in the loss function.
Higher values of λ lead to sparser configuration of α, con-
straining the network to focus on a smaller set of concepts
for each classification task (and vice versa), thus encod-
ing the inductive human bias towards simple explanations
(Miller 1956; Cowan 2001; Ma, Husain, and Bays 2014).
For further details on the impact of λ on the model predic-
tions and explanations, see Appendix A.6. It may be pointed
out that a similar regularization effect could be achieved by
simply minimizing the L1 norm over γi. However, as we
observed in A.5, the L1 loss does not sufficiently penalize
the concept scores for those features which are uncorrelated
with the predicted category. The Entropy loss, instead, cor-
rectly shrink to zero concept scores associated to uncorre-
lated features while the other remains close to one.

3.3 First-order logic explanations
Any Boolean function can be converted into a logic for-
mula in Disjunctive Normal Form (DNF) by means of its
truth-table (Mendelson 2009). Converting a truth table into
a DNF formula provides an effective mechanism to extract
logic rules of increasing complexity from individual obser-
vations to a whole class of samples. The following rule ex-
traction mechanism is applied to any empirical truth table
T i for each task i.

FOL extraction. Each row of the truth table T i can be
partitioned into two parts that are a tuple of binary con-
cept activations, q̂ ∈ Ĉi, and the outcome of f̄ i(q̂) ∈
{0, 1}. An example-level logic formula, consisting in a sin-
gle minterm, can be trivially extracted from each row for
which f̄ i(q̂) = 1, by simply connecting with the logic AND
(∧) the true concepts and negated instances of the false ones.
The logic formula becomes human understandable when-
ever concepts appearing in such a formula are replaced with
human-interpretable strings that represent their name (sim-
ilar consideration holds for f̄ i, in what follows). For exam-
ple, the following logic formula ϕit,

ϕit = c1 ∧ ¬c2 ∧ . . . ∧ cmi
, (9)

is the formula extracted from the t-th row of the table where,
in the considered example, only the second concept is false,
being cz the name of the z-th concept. Example-level for-
mulas can be aggregated with the logic OR (∨) to provide a
class-level formula, ∨

t∈Si

ϕit, (10)

being Si the set of rows indices of T i for which f̄ i(q̂) = 1,
i.e. it is the support of f̄ i. We define with φi(ĉ) the func-
tion that holds true whenever Eq. 10, evaluated on a given
Boolean tuple ĉ, is true. Due to the aforementioned defini-
tion of support, we get the following class-level First-Order
Logic (FOL) explanation for all the concept tuples,

∀ĉ ∈ Ĉi : φi(ĉ)↔ f̄ i(ĉ). (11)

We note that in case of non-concept-like input features, we
may still derive the FOL formula through the “concept de-
coder” function g (see Sec. 2),

∀x ∈ X : φi
(
ξ(g(x), µi)

)
↔ f̄ i

(
ξ(g(x), µi)

)
(12)

An example of the above scheme for both example and
class-level explanations is depicted on top-right of Fig. 2.

Remarks. The aggregation of many example-level ex-
planations may increase the length and the complexity of
the FOL formula being extracted for a whole class. How-
ever, existing techniques as the Quine–McCluskey algo-
rithm can be used to get compact and simplified equiv-
alent FOL expressions (McColl 1878; Quine 1952; Mc-
Cluskey 1956). For instance, the explanation (person ∧
nose) ∨ (¬person ∧ nose) can be formally simplified in
nose. Moreover, the Boolean interpretation of concept tuples
may generate colliding representations for different sam-
ples. For instance, the Boolean representation of the two
samples {(0.1, 0.7), (0.2, 0.9)} is the tuple c̄ = (0, 1) for
both of them. This means that their example-level explana-
tions match as well. However, a concept can be eventually
split into multiple finer grain concepts to avoid collisions.
Finally, we mention that the number of samples for which
any example-level formula holds (i.e. the support of the for-
mula) is used as a measure of the explanation importance. In
practice, example-level formulas are ranked by support and
iteratively aggregated to extract class-level explanations, un-
til the aggregation improves the accuracy of the explanation
over a validation set.

4 Related work
In order to provide explanations for a given black-box
model, most methods focus on identifying or scoring the
most relevant input features (Simonyan, Vedaldi, and Zis-
serman 2013; Zeiler and Fergus 2014; Ribeiro, Singh, and
Guestrin 2016b,a; Lundberg and Lee 2017; Selvaraju et al.
2017). Feature scores are usually computed sample by sam-
ple (i.e. providing local explanations) analyzing the ac-
tivation patterns in the hidden layers of neural networks
(Simonyan, Vedaldi, and Zisserman 2013; Zeiler and Fer-
gus 2014; Selvaraju et al. 2017) or by following a model-
agnostic approach (Ribeiro, Singh, and Guestrin 2016a;



Lundberg and Lee 2017). To enhance human understand-
ing of feature scoring methods, concept-based approaches
have been effectively employed for identifying common ac-
tivations patterns in the last nodes of neural networks cor-
responding to human categories (Kim et al. 2018a; Kazh-
dan et al. 2020) or constraining the network to learn such
concepts (Chen, Bei, and Rudin 2020; Koh et al. 2020). Ei-
ther way, feature-scoring methods are not able to explain
how neural networks compose features to make predictions
(Kindermans et al. 2019; Kim et al. 2018b; Alvarez-Melis
and Jaakkola 2018) and only a few of these approaches
have been efficiently extended to provide explanations for a
whole class (i.e. providing global explanations) (Simonyan,
Vedaldi, and Zisserman 2013; Ribeiro, Singh, and Guestrin
2016a). By contrast, a variety of rule-based approaches have
been proposed to provide concept-based explanations. Logic
rules are used to explain how black boxes predict class mem-
berships for indivudal samples (Guidotti et al. 2018; Ribeiro,
Singh, and Guestrin 2018), or for a whole class (Sato and
Tsukimoto 2001; Zilke, Loza Mencı́a, and Janssen 2016;
Ciravegna et al. 2020a,b). Distilling explanations from an
existing model, however, is not the only way to achieve ex-
plainability. Historically, standard machine-learning such as
Logistic Regression (McKelvey and Zavoina 1975), Gener-
alized Additive Models (Hastie and Tibshirani 1987; Lou,
Caruana, and Gehrke 2012; Caruana et al. 2015) Decision
Trees (Breiman et al. 1984; Quinlan 1986, 2014) and Deci-
sion Lists (Rivest 1987; Letham et al. 2015; Angelino et al.
2018) were devised to be intrinsically interpretable. How-
ever, most of them struggle in solving complex classification
problems. Logistic Regression, for instance, in its vanilla
definition, can only recognize linear patterns, e.g. it can-
not to solve the XOR problem (Minsky and Papert 2017).
Further, only Decision Trees and Decision Lists provide ex-
planations in the from of logic rules. Considering decision
trees, each path may be seen as a human comprehensible
decision rule when the height of the tree is reasonably con-
tained. Another family of concept-based XAI methods is
represented by rule-mining algorithms which became pop-
ular at the end of the last century (Holte 1993; Cohen 1995).
Recent research has led to powerful rule-mining approaches
as Bayesian Rule Lists (BRL) (Letham et al. 2015), where
a set of rules is “pre-mined” using the frequent-pattern tree
mining algorithm (Han, Pei, and Yin 2000) and then the best
rule set is identified with Bayesian statistics. In this paper,
the proposed approach is compared with methods providing
logic-based, global explanations. In particular, we selected
one representative approach from different families of meth-
ods: Decision Trees1 (white-box machine learning), BRL2

(rule mining) and ψ Networks3 (explainable neural models).

5 Experiments
The quality of the explanations and the classification per-
formance of the proposed approach are quantitatively as-
sessed and compared to state-of-the-art white-box models.

1https://scikit-learn.org/stable/modules/tree.
2https://github.com/tmadl/sklearn-expertsys.
3https://github.com/pietrobarbiero/logic explainer networks.
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Figure 4: The four case studies show how the proposed
Entropy-based networks (green) provide concise logic ex-
planations (yellow) of their own decision process in dif-
ferent real-world contexts. When input features are non-
interpretable, as pixel intensities, a “concept decoder”
(ResNet10) maps images into concepts. Entropy-based net-
works then map concepts into target classes.

A visual sketch of each classification problem (described
in detail in Sec. 5.1) and a selection of the logic formulas
found by the proposed approach is reported in Fig. 4. Six
quantitative metrics are defined and used to compare the pro-
posed approach with state-of-the-art methods. Sec. 5.2 sum-
marizes the main findings. Further details concerning the ex-
periments are reported in the supplemental material A.

5.1 Classification tasks and datasets
Four classification problems ranging from computer vision
to medicine are considered. Computer vision datasets (e.g.
CUB) are annotated with low-level concepts (e.g. bird at-
tributes) used to train concept bottleneck pipelines (Koh
et al. 2020). In the other datasets, the input data is rescaled
into a categorical space (Rk → C) suitable for concept-
based networks. Please notice that this preprocessing step
is performed for all white-box models considered in the ex-
periments for a fair comparison. Further descriptions of each
dataset and links to all sources are reported in Appendix A.2.
Will we recover from ICU? (MIMIC-II). The Multipa-
rameter Intelligent Monitoring in Intensive Care II (MIMIC-
II, (Saeed et al. 2011; Goldberger et al. 2000)) is a public-

https://scikit-learn.org/stable/modules/tree
https://github.com/tmadl/sklearn-expertsys.
https://github.com/pietrobarbiero/logic_explainer_networks.


Table 1: Classification accuracy (%). Left group, the compared white-box models. Right group, two black box models. We
indicate in bold the best model in each group, with a star the best model overall.

Entropy net Tree BRL ψ net Neural Network Random Forest

MIMIC-II 79.05? ± 1.35 77.53± 1.45 76.40± 1.22 77.19± 1.64 77.81± 2.45 78.88± 2.25
V-Dem 94.51± 0.48 85.61± 0.57 91.23± 0.75 89.77± 2.07 94.53? ± 1.17 93.08± 0.44
MNIST 99.81± 0.02 99.75± 0.01 99.80± 0.02 99.79± 0.03 99.72± 0.03 99.96? ± 0.01
CUB 92.95± 0.20 81.62± 1.17 90.79± 0.34 91.92± 0.27 93.10? ± 0.51 91.88± 0.36

access intensive care unit (ICU) database consisting of
32,536 subjects (with 40,426 ICU admissions) admitted to
different ICUs. The task consists in identifying recovering
or dying patients after ICU admission. An end-to-end clas-
sifier f : C → Y carries out the classification task.
What kind of democracy are we living in? (V-Dem).
Varieties of Democracy (V-Dem, (Pemstein et al. 2018;
Coppedge et al. 2021)) dataset contains a collection of in-
dicators of latent regime characteristics over 202 countries
from 1789 to 2020. The database include k1 = 483 low-
level indicators k2 = 82 mid-level indices. The task con-
sists in identifying electoral democracies from non-electoral
ones. We indicate with C1, C2 the spaces associated to the
activations of the two levels of concepts. Classifiers f1 and
f2 are trained to learn the mapC1 → C2 → Y . Explanations
are given for classifier f2 in terms of concepts c2 ∈ C2.
What does parity mean? (MNIST Even/Odd). The Modi-
fied National Institute of Standards and Technology database
(MNIST, (LeCun 1998)) contains a large collection of im-
ages representing handwritten digits. The task we con-
sider here is slightly different from the common digit-
classification. Assuming Y ⊂ {0, 1}2, we are interested in
determining if a digit is either odd or even, and explaining
the assignment to one of these classes in terms of the digit la-
bels (concepts in C). The mapping X → C is provided by a
ResNet10 classifier g (He et al. 2016) trained from scratch.
while the classifier f learn both the final mapping and the
explanation as a function C → Y .
What kind of bird is that? (CUB). The Caltech-UCSD
Birds-200-2011 dataset (CUB, (Wah et al. 2011)) is a fine-
grained classification dataset. It includes 11,788 images rep-
resenting r = 200 (Y = {0, 1}200) different bird species.
312 binary attributes (concepts in C) describe visual char-
acteristics (color, pattern, shape) of particular parts (beak,
wings, tail, etc.) for each bird image. The mapping X → C
is performed with a ResNet10 model g trained from scratch
while the classifier f learns the final function C → Y .

Quantitative metrics. Measuring the classification qual-
ity is of crucial importance for models that are going to
be applied in real-world environments. On the other hand,
assessing the quality of the explanations is required for a
safedeployment. In contrast with other kind of explanations,
logic-based formulas can be evaluated quantitatively. Given
a classification problem, first a set of rules are extracted for
each target category from each considered model. Each ex-
planation is then tested on an unseen set of test samples.
The results for each metric are reported in terms of mean
and standard error, computed over a 5-fold cross validation
(Krzywinski and Altman 2013). For each experiment and

for each model model (f : C → Y mapping concepts to
target categories) six quantitative metrics are measured. (i)
The MODEL ACCURACY measures how well the explainer
identifies the target classes on unseen data (see Table 1). (ii)
The EXPLANATION ACCURACY measures how well the ex-
tracted logic formulas identifies the target classes (Fig. 5).
This metric is obtained as the average of the F1 scores com-
puted for each class explanation. (iii) The COMPLEXITY OF
AN EXPLANATION is computed by standardizing the expla-
nations in DNF and then by counting the number of terms
of the standardized formula (Fig. 5): the longer the formula,
the harder the interpretation for a human being. (iv) The FI-
DELITY OF AN EXPLANATION measures how well the ex-
tracted explanation matches the predictions obtained using
the explainer (Table 2). (v) The RULE EXTRACTION TIME
measures the time required to obtain an explanation from
scratch (see Fig. 6), computed as the sum of the time re-
quired to train the model and to extract the formula from a
trained explainer. (vi) The CONSISTENCY OF AN EXPLANA-
TION measures the average similarity of the extracted expla-
nations over the 5-fold cross validation runs (see Table 3),
computed by counting how many times the same concepts
appear in a logic formula over different iterations.

5.2 Results and discussion
Experiments show how entropy-based networks outperform
state-of-the-art white box models such as BRL and decision
trees4 and interpretable neural models such as ψ networks
on challenging classification tasks (Table 1). Moreover, the
entropy-based regularization and the adoption of a concept-
based neural network have minor affects on the classification
accuracy of the explainer when compared to a standard black
box neural network5 directly working on the input data, and
a Random Forest model applied on the concepts.At the same
time, the logic explanations provided by entropy-based net-
works are better than ψ networks and almost as accurate
as the rules found by decision trees and BRL, while being
far more concise, as demonstrated in Fig. 5. More precisely,
logic explanations generated by the proposed approach rep-
resent non-dominated solutions (Marler and Arora 2004)
quantitatively measured in terms of complexity and clas-
sification error of the explanation. Furthermore, the time
required to train entropy-based networks is only slightly

4The height of the tree is limited to obtain rules of comparable
lengths. See supplementary materials A.3.

5In the case of MIMIC-II and V-Dem, this is a standard neural
network with the same hyperparameters of the entropy-based one,
but with a linear layer as first layer. In the case of MNIST and CUB,
it is the g model directly predicting the final classes g : X → Y .



Table 2: Out-of-distribution fidelity (%)

Entropy net ψ net

MIMIC-II 79.11± 2.02 51.63± 6.67
V-Dem 90.90± 1.23 69.67± 10.43
MNIST 99.63± 0.00 65.68± 5.05
CUB 99.86± 0.01 77.34± 0.52

Table 3: Consistency (%)

Entropy net Tree BRL ψ net

MIMIC-II 28.75 40.49 30.48 27.62
V-Dem 46.25 72.00 73.33 38.00
MNIST 100.00 41.67 100.00 96.00
CUB 35.52 21.47 42.86 41.43

higher with respect to Decision Trees but is lower than ψ
Networks and BRL by one to three orders of magnitude (Fig.
6), making it feasible for explaining also complex tasks. The
fidelity (Table 2)6 of the formulas extracted by the entropy-
based network is always higher than 90% with the only ex-
ception of MIMIC. This means that almost any prediction
made using the logic explanation matches the correspond-
ing prediction made by the model, making the proposed ap-
proach very close to a white box model. The combination of
these results empirically shows that our method represents a
viable solution for a safe deployment of explainable cutting-
edge models.

The reason why the proposed approach consistently out-
perform ψ networks across all the key metrics (i.e. clas-
sification accuracy, explanation accuracy, and fidelity) can
be explained observing how entropy-based networks are
far less constrained than ψ networks, both in the architec-
ture (our approach does not apply weight pruning) and in
the loss function (our approach applies a regularization on
the distributions αi and not on all weight matrices). Like-
wise, the main reason why the proposed approach provides
a higher classification accuracy with respect to BRL and
decision trees may lie in the smoothness of the decision
functions of neural networks which tend to generalize bet-
ter than rule-based methods, as already observed by Tavares
et al. (Tavares et al. 2020). For each dataset, we report in
the supplemental material (Appendix A.7) a few examples
of logic explanations extracted by each method, as well as
in Fig. 4. We mention that the proposed approach is the
only matching the logically correct ground-truth explanation
for the MNIST even/odd experiment, i.e. ∀x, isOdd(x) ↔
isOne(x)⊕isThree(x)⊕isFive(x)⊕isSeven(x)⊕isNine(x)
and ∀x, isEven(x)↔ isZero(x)⊕ isTwo(x)⊕ isfour(x)⊕
isSix(x) ⊕ isEight(x), being ⊕ the exclusive OR. In terms
of formula consistency, we observe how BRL is the most
consistent rule extractor, closely followed by the proposed
approach (Table 3).

6We did not compute the fidelity of decision trees and BRL as
they are trivially rule-based models.
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Figure 5: Non-dominated solutions (Marler and Arora 2004)
(dotted black line) in terms of average explanation complex-
ity and average explanation test error. The vertical dotted red
line marks the maximum explanation complexity laypeople
can handle (i.e. complexity ≈ 9, see (Miller 1956; Cowan
2001; Ma, Husain, and Bays 2014)). Notice how the expla-
nations provided by the Entropy-based Network are always
one of the non-dominated solution.
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Figure 6: Time required to train models and to extract the
explanations. Our model compares favorably with the com-
petitors, with the exception of Decision Trees. BRL is by
one to three order of magnitude slower than our approach.

6 Conclusions
This work contributes to a safer adoption of some of the
most powerful AI technologies, allowing deep neural net-
works to have a greater impact on society by making them
explainable-by-design, thanks to an entropy-based approach
that yields FOL-based explanations. Moreover, as the pro-
posed approach provides logic explanations for how a model
arrives at a decision, it can be effectively used to reverse
engineer algorithms, processes, to find vulnerabilities, or to
improve system design powered by deep learning models.
From a scientific perspective, formal knowledge distillation
from state-of-the-art networks may enable scientific discov-
eries or falsification of existing theories. However, the ex-
traction of a FOL explanation requires symbolic input and
output spaces. In some contexts, such as computer vision,
the use of concept-based approaches may require additional
annotations and attribute labels to get a consistent symbolic
layer of concepts. Recent works on automatic concept ex-
traction may alleviate the related costs, leading to more cost-
effective concept annotations (Ghorbani et al. 2019; Kazh-
dan et al. 2020).
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2020. Now You See Me (CME): Concept-based Model Extraction.
arXiv preprint arXiv:2010.13233.
Kim, B.; Gilmer, J.; Wattenberg, M.; and Viégas, F. 2018a. Tcav:
Relative concept importance testing with linear concept activation
vectors.
Kim, B.; Wattenberg, M.; Gilmer, J.; Cai, C.; Wexler, J.; Viegas, F.;
et al. 2018b. Interpretability beyond feature attribution: Quantita-
tive testing with concept activation vectors (tcav). In International
conference on machine learning, 2668–2677. PMLR.
Kindermans, P.-J.; Hooker, S.; Adebayo, J.; Alber, M.; Schütt,
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A Appendix
A.1 Software
In order to make the proposed approach accessible to the
whole community, we released Anonymous (Anonymous
2021), a Python package7 with an extensive documentation
on methods and unit tests. The Python code and the scripts
used for the experiments, including parameter values and
documentation, is freely available under Apache 2.0 Public
License from a GitHub repository.

The code library is designed with intuitive APIs requiring
only a few lines of code to train and get explanations from
the neural network as shown in the following code snippet
1.

1 import torch_explain as te
2 from torch_explain.logic import

test_explanation
3 from torch_explain.logic.nn import

explain_class
4
5 # XOR problem with additional features
6 x0 = torch.zeros((4, 100))
7 x = torch.tensor([
8 [0, 0, 0],
9 [0, 1, 0],

10 [1, 0, 0],
11 [1, 1, 0],
12 ], dtype=torch.float)
13 x = torch.cat([x, x0], dim=1)
14 y = torch.tensor([0, 1, 1, 0], dtype=

torch.long)
15
16 # network architecture
17 layers = [
18 te.nn.EntropyLogicLayer(x.shape[1],

10, n_classes=2),
19 torch.nn.LeakyReLU(),
20 te.nn.LinearIndependent(10, 10,

n_classes=2),
21 torch.nn.LeakyReLU(),
22 te.nn.LinearIndependent(10, 1,

n_classes=2, top=True)
23 ]
24 model = torch.nn.Sequential(*layers)
25
26 # train loop
27 optimizer = torch.optim.AdamW(model.

parameters(), lr=0.01)
28 loss_form = torch.nn.CrossEntropyLoss()
29 model.train()
30 for epoch in range(1001):
31 optimizer.zero_grad()
32 y_pred = model(x)
33 loss = loss_form(y_pred, y) + \
34 0.00001 * te.nn.functional.

entropy_logic_loss(model)
35 loss.backward()
36 optimizer.step()
37
38 # logic explanations
39 y1h = one_hot(y)

7https://github.com/pietrobarbiero/entropy-lens

40 _, class_explanations, _ = explain_class
(model, x, y1h, x, y1h)

Listing 1: Example on how to use the APIs to implement the
proposed approach.

A.2 Dataset Description
Will we recover from ICU? (MIMIC-II). The Multipa-
rameter Intelligent Monitoring in Intensive Care II (MIMIC-
II, (Saeed et al. 2011; Goldberger et al. 2000)) is a public-
access intensive care unit (ICU) database consisting of
32,536 subjects (with 40,426 ICU admissions) admitted to
different ICUs. The dataset contains detailed descriptions
of a variety of clinical data classes: general, physiological,
results of clinical laboratory tests, records of medications,
fluid balance, and text reports of imaging studies (e.g. x-
ray, CT, MRI, etc). In our experiments, we removed non-
anonymous information, text-based features, time series in-
puts, and observations with missing data. We discretize con-
tinuous features into one-hot encoded categories. After such
preprocessing step, we obtained an input space C composed
of k = 90 key features. The task consists in identifying re-
covering or dying patients after ICU admission.

What kind of democracy are we living in? (V-Dem).
Varieties of Democracy (V-Dem, (Pemstein et al. 2018;
Coppedge et al. 2021)) is a dataset containing a collection of
indicators of latent regime characteristics over 202 countries
from 1789 to 2020. The database include k1 = 483 low-
level indicators (e.g. media bias, party ban, high-court inde-
pendence, etc.), k2 = 82 mid-level indices (e.g. freedom of
expression, freedom of association, equality before the law,
etc), and 5 high-level indices of democracy principles (i.e.
electoral, liberal, participatory, deliberative, and egalitarian).
In the experiments a binary classification problem is con-
sidered to identify electoral democracies from non-electoral
democracies. We indicate with C1 and C2 the spaces asso-
ciated to the activations of the aforementioned two levels of
concepts. Two classifiers f1 and f2 are trained to learn the
map C1 → C2 → Y . Explanations are given for classifier
f2 in terms of concepts c2 ∈ C2.

What does parity mean? (MNIST Even/Odd). The
Modified National Institute of Standards and Technology
database (MNIST, (LeCun 1998)) contains a large collection
of images representing handwritten digits. The input space
X ⊂ R28×28 is composed of 28x28 pixel images while the
concept space C with k = 10 is represented by the label in-
dicator for digits from 0 to 9. The task we consider here is
slightly different from the common digit-classification. As-
suming Y ⊂ {0, 1}2, we are interested in determining if a
digit is either odd or even, and explaining the assignment
to one of these classes in terms of the digit labels (concepts
in C). The mapping X → C is provided by a ResNet10
classifier g (He et al. 2016) trained from scratch. while the
classifier f is used to learn both the final mapping and the
explanation as a function C → Y .

What kind of bird is that? (CUB). The Caltech-UCSD
Birds-200-2011 dataset (CUB, (Wah et al. 2011)) is a fine-
grained classification dataset. It includes 11,788 images rep-

https://github.com/pietrobarbiero/entropy-lens


resenting r = 200 (Y = {0, 1}200) different bird species.
312 binary attributes describe visual characteristics (color,
pattern, shape) of particular parts (beak, wings, tail, etc.)
for each bird image. Attribute annotations, however, is quite
noisy. For this reason, attributes are denoised by consider-
ing class-level annotations (Koh et al. 2020)8. In the end, a
total of 108 attributes (i.e. concepts with binary activations
belonging to C) have been retained. The mapping X → C
from images to attribute concepts is performed again with a
ResNet10 model g trained from scratch while the classifier
f learns the final function C → Y .

All datasets employed are freely available (only MIMIC-
II requires an online registration) and can be downloaded
from the following links:
MIMIC: https://archive.physionet.org/mimic2.
V-Dem: https://www.v-dem.net/en/data/data/v-dem-
dataset-v111.
MNIST: http://yann.lecun.com/exdb/mnist.
CUB: http://www.vision.caltech.edu/visipedia/CUB-200-
2011.html.

A.3 Experimental details
Batch gradient-descent and the Adam optimizer with decou-
pled weight decay (Loshchilov and Hutter 2017) and learn-
ing rate set to 10−2 are used for the optimization of all neu-
ral models’ parameters (Entropy-based Network and ψ Net-
work). An early stopping strategy is also applied: the model
with the highest accuracy on the validation set is saved and
restored before evaluating the test set.

With regard to the Entropy-based Network, Tab. 4 reports
the hyperparameters employed to train the network in all ex-
periments. All Entropy-based Networks feature ReLU ac-
tivations and linear fully-connected layers (except for the
first layer which is the Entropy Layer). A grid search cross-
validation strategy has been employed on the validation set
to select hyperparameter values. The objective was to maxi-
mize at the same time both model and explanation accuracy.
λ represents the trade-off parameter in Eq. 8 while τ is the
temperature of Eq. 2.

Table 4: Hyper parameters of entropy-based networks.

λ τ max epochs hidden neurons

MIMIC-II 10−3 0.7 200 20
V-Dem 10−5 5 200 20, 20
MNIST 10−7 5 200 10
CUB 10−4 0.7 500 10

Concerning the ψ network in all experiments one network
per class has been trained. They are composed of two hid-
den layer of 10 and 5 hidden neurons respectively. As indi-
cated in the original paper, an l1 weight regularization has
been applied to all layers of the network. As in this work,

8A certain attribute is set as present only if it is also present
in at least 50% of the images of the same class. Furthermore we
only considered attributes present in at least 10 classes after this
refinement.

the contribute in the overall loss of the l1 regularization is
weighted by an hyperparameter λ = 10−4. The maximum
number of non-zero input weight (fan-in) is set to 3 in in
MIMIC and V-Dem while for MNIST and CUB200 it is set
to 4. In Ciravegna et al. (Ciravegna et al. 2020a), ψ networks
were devised to provide explanations of existing models; in
this paper, however, we have shown how they can directly
solve classification problems.

Decision Trees have been limited in their maximum
height in all experiments to maintain the complexity of the
rules at a comparable level w.r.t the other methods. More
precisely the maximum height has been set to 5 in all bi-
nary classification tasks (MIMIC-II, V-Dem, MNIST) while
we allowed a maximum height of 30 in the CUB experiment
due to the high number of classes to predict (200).

BRL algorithms requires to first run the FP-growth al-
gorithm (Han, Pei, and Yin 2000) (an enhanced version of
Apriori) to mine a first set of frequent rules. The hyperpa-
rameter used by FP-growth are: the minimum support in
percentage of training samples for each rule (set to 10%),
the minimum and the maximum number of features consid-
ered by each rule (respectively set to 1 and 2). Regarding the
Bayesian selection of the best rules, the number of Markov
chain Monte Carlo used for inference is set to 3, while 50000
iterations maximum are allowed. At last the expected length
and width of the extracted rule list is set respectively to 3 and
1. These are the default values indicated in the BRL reposi-
tory. Due to the computational complexity and the high num-
ber of hyperparameters, they have not been cross validated.

The code for the experiments is implemented in Python 3,
relying upon open-source libraries (Paszke et al. 2019; Pe-
dregosa et al. 2011). All the experiments have been run on
the same machine: Intel® Core™ i7-10750H 6-Core Proces-
sor at 2.60 GHz equipped with 16 GiB RAM and NVIDIA
GeForce RTX 2060 GPU.

A.4 Explainability metrics details
In the following, we report in tabular form the results con-
cerning the explanation accuracy and the complexity of the
rules (Fig. 5) and the extraction time (Fig. 6).

Table 5: Explanation’s accuracy (%) computed as the aver-
age of the F1 scores computed for each class.

Entropy net Tree BRL ψ net

MIMIC-II 66.93± 2.14 69.15± 2.24 70.59± 2.17 49.51± 3.91
V-Dem 89.88± 0.50 85.45± 0.58 91.21± 0.75 67.08± 9.68
MNIST 99.62± 0.00 99.74± 0.01 99.79± 0.02 65.64± 5.05
CUB 95.24± 0.05 89.36± 0.92 96.02± 0.17 76.10± 0.56

Table 6: Complexity computed as the number of terms in
each minterm of the DNF rules.

Entropy net Tree BRL ψ net

MIMIC-II 3.50± 0.88 66.60± 1.45 57.70± 35.58 20.6± 5.36
V-Dem 3.10± 0.51 30.20± 1.20 145.70± 57.93 5.40± 2.70
MNIST 50.00± 0.00 47.50± 0.72 1352.30± 292.62 96.90± 10.01
CUB 3.74± 0.03 45.92± 1.16 8.87± 0.11 15.96± 0.96

https://archive.physionet.org/mimic2
https://www.v-dem.net/en/data/data/v-dem-dataset-v111
https://www.v-dem.net/en/data/data/v-dem-dataset-v111
http://yann.lecun.com/exdb/mnist
http://www.vision.caltech.edu/visipedia/CUB-200-2011.html
http://www.vision.caltech.edu/visipedia/CUB-200-2011.html


Table 7: Rule extraction time (s) calculated as the time re-
quired to train the models and to extract the corresponding
rules.

Entropy net Tree BRL ψ net

MIMIC-II 23.08± 3.53 0.06± 0.00 440.24± 9.75 36.68± 6.10
V-Dem 59.90± 31.18 0.49± 0.07 22843.21± 194.49 103.78± 1.65
MNIST 138.32± 0.63 2.72± 0.02 2594.79± 177.34 385.57± 17.81
CUB 171.87± 1.95 8.10± 0.65 264678.29± 56521.40 3707.29± 1006.54

A.5 Entropy and L1
This section presents additional experiments on a toy dataset
showing (1) the advantage of using the entropy loss func-
tion in Eq. 7 w.r.t. the L1 loss (used by e.g. the ψ network)
and (2) the advantage in terms of explainability provided by
the Entropy Layer w.r.t. a standard linear layer. Three neural
models are compared:

• model A: a standard multi-layer perceptron using linear
(fully connected) layers, using an L1 regularization in the
loss function.

• model B: a multi-layer perceptron using the Entropy
Layer as first layer and an L1 regularization in the loss
function.

• model C: a multi-layer perceptron using the Entropy
Layer as first layer and the entropy loss regularization
(Eq. 7) in the loss function.

The dataset used for this experiment is shown in Ta-
ble 8. The training set is composed of four Boolean fea-
tures {x1, x2, x3, x4} and four Boolean target categories
{y,¬y, z,¬z}. The target category y is the XOR of the fea-
tures x1 and x2, i.e. ∀x : y = 1 ↔ x1 ⊕ x2. The tar-
get category z is the OR of the features x3 and x4, i.e.
∀x : z = 1 ↔ x3 ∧ x4. The categories ¬y and ¬z are
the complement of the categories y and z, respectively.

The neural networks used for these experiment are multi-
layer perceptrons with 2 hidden layers of 20 and 10 units
with ReLu activation. Batch gradient-descent and the Adam
optimizer with decoupled weight decay (Loshchilov and
Hutter 2017) and learning rate set to 10−4 are used for all
neural models. The number of epochs is set to 18000 to en-
sure complete convergence (overfitting the training set), and
the regularization coefficient is set to λ = 10−4 for both L1
and entropy losses. For the neural model using the entropy
loss (model C), the temperature is set to τ = 0.3.

Once the networks have been trained, we extracted from
each model a summary of the concept relevance for each
target category. Figure 7 shows the values of the weight ma-
trix of the first hidden layer of the model A (not using the
Entropy Layer). The L1 loss pruned some connections be-
tween input features and hidden neurons (hi). However, it
is not evident the relevance of each feature for each target
class. Figure 8 shows the matrix α̃ of the concept scores
provided by the Entropy layer of the model B (trained with
the L1 loss). It can be observed how the matrix α̃ offers a
much better overview of the relevance of each feature for
each target category. However, the L1 loss was not sufficient
to make the model learn that e.g. the category y does not de-
pend from the feature x3 (recall that ∀x : y = 1↔ x1⊕x2),

Table 8: Toy dataset used to compare the Entropy Layer to
a standard linear layer and the entropy loss to the L1 loss
function.

x1 x2 x3 x4 y ¬y z ¬z
0 0 0 0 0 1 0 1
0 1 0 0 1 0 0 1
1 0 0 0 1 0 0 1
1 1 0 0 0 1 0 1
0 0 0 0 0 1 0 1
0 0 0 1 0 1 1 0
0 0 1 0 0 1 1 0
0 0 1 1 0 1 1 0

as the score α̃yx3
≈ 0.99. Finally, Figure 9 shows the matrix

α̃ of the concept scores provided by the Entropy layer of the
model C (trained with the entropy loss in Eq. 7). The entropy
loss was quite effective helping the neural network identify
the most relevant input features for each task, discarding re-
dundant input concepts. Figure 10 shows the trained Entropy
Network (model C) on the toy dataset as well as the resulting
logic explanations inferred from the training set matching
ground-truth logic formulas.

A.6 Impact of hyperparameters on the logic
explanations

We measured the impact of the hyperparameters on the qual-
ity of the explanations on the vDem dataset. Table 9 summa-
rizes the average model accuracy, explanation accuracy, and
explanation complexity obtained by running a 5-fold cross
validation on the grid where λ ∈ [10−3, 10−6] and τ ∈ [4, 6]
for the vDem dataset. The reported variance is the standard
error of the mean. All the other parameters of the network
(number of layers, number of epochs, etc...) have been set as
reported in the main experimental section. Overall, the vari-
ation (within the defined grid) of the hyperparameters pro-
duced some minor effects on the quality of the explanations
in terms of accuracy and complexity.

Table 9: Impact of the hyperparameters on the quality of the
model and the explanations.

(τ, λ) Model accuracy Explanation accuracy Explanation complexity
(4, 10−6) 94.15± 0.53 89.68± 0.36 1.70± 0.20
(4, 10−5) 94.56± 0.28 88.20± 1.05 2.50± 0.76
(4, 10−4) 94.53± 0.42 87.73± 1.25 3.10± 0.83
(4, 10−3) 94.62± 0.45 89.37± 0.73 2.00± 0.16
(5, 10−6) 94.53± 0.65 89.91± 0.59 2.50± 0.50
(5, 10−5) 94.86± 0.23 88.04± 1.29 1.60± 0.19
(5, 10−4) 94.68± 0.48 88.20± 0.80 3.25± 0.92
(5, 10−3) 94.53± 0.58 89.92± 0.39 2.00± 0.22
(6, 10−6) 94.83± 0.49 85.53± 1.98 3.30± 0.64
(6, 10−5) 94.56± 0.51 87.90± 0.98 2.70± 0.58
(6, 10−4) 94.48± 0.73 87.22± 1.80 1.80± 0.25
(6, 10−3) 94.05± 0.58 90.15± 0.68 2.12± 0.43
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Figure 7: Concept relevance in terms of the weights W
of a standard linear layer (not entropy layer) used as the
first layer of the network trained by minimizing the L1 loss
(model A).

A.7 Logic formulas
Table 10 reports a selection of the rule extracted by each
method in all the experiments presented in the main paper.
For all methods we report only the explanations of the first
class for the first split of the Cross-validation. At last, for
the Entropy-based method only, Tables 11, 12, 13, 14 re-
sume the explanations of all classes in all experiments. For
simplicity, in the following tables we dropped the universal
quantifier for all formulas.

x1 x2 x3 x4

y
¬

y
z

¬
z

1.0000 0.9948 0.9890 0.9514

0.9991 1.0000 0.8371 0.8569

0.5491 0.5875 1.0000 0.9994

0.4210 0.3855 1.0000 0.9994

L1∗ concept scores α̃
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Figure 8: Concept scores α̃ for the Entropy layer (first layer
of the network) trained by minimizing the L1 loss instead of
the entropy loss of Eq. 7 (model B).
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Figure 9: Concept scores α̃ for the Entropy layer (first layer
of the network) trained by minimizing the entropy loss in
Eq. 7 (model C).



Figure 10: Visualization of the Entropy-based Network (model C) trained on the toy dataset after 18000 epochs. The first layer
of the network is the Entropy Layer. The gray-scale intensity of the input neurons represents the concept scores α̃. The darker
the input neuron, the higher the score (α̃ji → 1), the lighter the input neuron, the lower the score (α̃ji → 0).



Table 10: Comparison of the formulas obtained in the first run of each experiment for all methods. We dropped the arguments
in the logic predicates as well as the universal quantifiers for simplicity. Only the formula explaining the first class has been
reported. Ellipses are used to truncate overly long formulas.

Dataset Method Formulas

MIMIC-II Entropy recover↔¬liver flg ∧ ¬stroke flg ∧ ¬mal flg

DTree
recover↔ (age high <0.5 ∧ mal flg <0.5 ∧ stroke flg <0.5 ∧
age normal <0.5 ∧ iv day 1 normal <0.5) ∨ (age high <0.5 ∧ mal flg <0.5 ∧
stroke flg <0.5 ∧ age normal <0.5 ∧ iv day 1 normal >0.5) ∨ (age high <0.5 ∧ ...

BRL
recover↔ (age low ∧ sofa first low ∧ ¬(mal flg ∧ ¬weight first normal)) ∨
(age high ∧ ¬service num normal ∧ ¬(age low ∧ sofa first low) ∧ ¬(chf flg ∧
¬day icu intime num high) ∧ ¬(mal flg ∧ ¬weight first normal) ∧ ¬(stroke flg ∧ ...

ψ Net
recover↔ (iv day 1 normal ∧ ¬age high ∧
¬hour icu intime normal ∧ ¬sofa first normal) ∨ (mal flg ∧
¬age high ∧ ¬hour icu intime normal ∧ ¬sofa first normal) ∨ ...

V-Dem Entropy non electoral democracy↔¬v2xel frefair ∨ ¬v2x elecoff ∨ ¬v2x cspart ∨
¬v2xeg eqaccess ∨ ¬v2xeg eqdr

DTree
non electoral democracy↔ (v2xel frefair <0.5 ∧ v2xdl delib <0.5 ∧
v2x frassoc thick <0.5) ∨ (v2xel frefair <0.5 ∧ v2xdl delib <0.5 ∧
v2x frassoc thick >0.5 ∧ v2x freexp altinf <0.5 ∧ v2xeg eqprotec <0.5) ∨ ...

BRL non electoral democracy↔¬v2x cspart ∨ ¬v2x elecoff ∨ ¬v2x frassoc thick ∨
¬v2x freexp altinf ∨ ¬v2xcl rol ∨ (¬v2x mpi ∧ ¬v2xel frefair)

ψ Net
non electoral democracy↔¬v2xeg eqaccess ∨ (v2x egal ∧ ¬v2x frassoc thick) ∨
(v2xeg eqdr ∧ ¬v2x egal) ∨ (v2xel frefair ∧ ¬v2x frassoc thick) ∨
(¬v2x cspart ∧ ¬v2x suffr) ∨ (¬v2x frassoc thick ∧ ¬v2x suffr) ∨ ...

MNIST Entropy
even↔ (zero ∧ ¬one ∧ ¬two ∧ ¬three ∧ ¬four ∧ ¬five ∧
¬six ∧ ¬seven ∧ ¬eight ∧ ¬nine) ∨ (two ∧ ¬zero ∧ ¬one ∧ ¬three ∧
¬four ∧ ¬five ∧ ¬six ∧ ¬seven ∧ ¬eight ∧ ¬nine) ∨ (four ∧ ¬zero ∧ ...

DTree
even↔ (one <0.54 ∧ nine <1.97·10−5 ∧ three <0.00 ∧ five <0.09 ∧ seven <0.20) ∨
(one <0.54 ∧ nine <1.97·10−5 ∧ three <0.00 ∧ five >0.09 ∧ two >0.97) ∨
(one <0.54 ∧ nine <1.97·10−5 ∧ three >0.00 ∧ two <0.99 ∧ eight >1.00) ∨ ...

BRL
even↔ (two ∧ ¬one ∧ ¬seven ∧ ¬three ∧ ¬(seven ∧ ¬two)) ∨
(four ∧ ¬five ∧ ¬nine ∧ ¬seven ∧ ¬three ∧ ¬(seven ∧ ¬two) ∧ ¬(two ∧
¬one)) ∨ (four ∧ ¬five ∧ ¬seven ∧ ¬three ∧ ¬(four ∧ ¬nine) ∧ ¬(seven ∧ ...

ψ Net
even↔ (four ∧ nine ∧ six ∧ three ∧ zero ∧ ¬eight ∧ ¬one ∧
¬seven) ∨ (four ∧ nine ∧ six ∧ two ∧ zero ∧ ¬eight ∧ ¬one ∧ ¬seven) ∨
(eight ∧ six ∧ ¬four ∧ ¬nine ∧ ¬seven ∧ ¬three ∧ ¬two) ∨ (eight ∧ six ∧...

CUB Entropy
black footed albatross↔ has bill length about the same as head ∧
has wing pattern solid ∧ ¬has upper tail color grey ∧ ¬has belly color white
∧ ¬has wing shape roundedwings ∧ ¬has bill color black

DTree
black footed albatross↔ (has back pattern striped <0.46 ∧
has back color buff <0.69 ∧ has upper tail color white <0.59 ∧
has under tail color buff <0.82 ∧ has shape perchinglike <0.66 ∧ ...

BRL
black footed albatross↔ (has back pattern striped ∧
has belly color black ∧ has bill shape hooked seabird ∧
¬has belly color white) ∨ (has back pattern striped ∧ ...

ψ Net
black footed albatross↔ (has bill shape hooked seabird ∧
¬has breast color white ∧ ¬has size small 5 9 in ∧
¬has wing color grey) ∨ (has bill shape hooked seabird ∧ ...



Table 11: Formulas extracted from the MIMIC-II dataset.

Formulas

recover↔¬liver flg ∧ ¬stroke flg ∧ ¬mal flg

non recover↔ mal flg ∨ (age HIGH ∧ ¬iv day 1 NORMAL)

Table 12: Formulas extracted from the V-Dem dataset.

Formulas

non electoral democracy↔¬v2xel frefair ∨ ¬v2x elecoff ∨ ¬v2x cspart ∨ ¬v2xeg eqaccess ∨ ¬v2xeg eqdr

electoral democracy↔ v2xel frefair ∧ v2x elecoff ∧ v2x cspart

Table 13: Formulas extracted from the MNIST dataset.

Formulas

even↔ (zero ∧ ¬one ∧ ¬two ∧ ¬three ∧ ¬four ∧ ¬five ∧ ¬six ∧ ¬seven ∧ ¬eight ∧ ¬nine) ∨ (two ∧ ¬zero ∧ ¬one ∧ ¬three
∧ ¬four ∧ ¬five ∧ ¬six ∧ ¬seven ∧ ¬eight ∧ ¬nine) ∨ (four ∧ ¬zero ∧ ¬one ∧ ¬two ∧ ¬three ∧ ¬five ∧ ¬six ∧ ¬seven ∧
¬eight ∧ ¬nine) ∨ (six ∧ ¬zero ∧ ¬one ∧ ¬two ∧ ¬three ∧ ¬four ∧ ¬five ∧ ¬seven ∧ ¬eight ∧ ¬nine) ∨ (eight ∧ ¬zero ∧
¬one ∧ ¬two ∧ ¬three ∧ ¬four ∧ ¬five ∧ ¬six ∧ ¬seven ∧ ¬nine)

odd↔ (one ∧ ¬zero ∧ ¬two ∧ ¬three ∧ ¬four ∧ ¬five ∧ ¬six ∧ ¬seven ∧ ¬eight ∧ ¬nine) ∨ (three ∧ ¬zero ∧ ¬one ∧ ¬two
∧ ¬four ∧ ¬five ∧ ¬six ∧ ¬seven ∧ ¬eight ∧ ¬nine) ∨ (five ∧ ¬zero ∧ ¬one ∧ ¬two ∧ ¬three ∧ ¬four ∧ ¬six ∧ ¬seven ∧
¬eight ∧ ¬nine) ∨ (seven ∧ ¬zero ∧ ¬one ∧ ¬two ∧ ¬three ∧ ¬four ∧ ¬five ∧ ¬six ∧ ¬eight ∧ ¬nine) ∨ (nine ∧ ¬zero ∧
¬one ∧ ¬two ∧ ¬three ∧ ¬four ∧ ¬five ∧ ¬six ∧ ¬seven ∧ ¬eight)



Table 14: Formulas extracted from the CUB dataset.

Formulas

Black footed Albatross ↔ has bill length about the same as head ∧ has wing pattern solid ∧ ¬has upper tail color grey ∧
¬has belly color white ∧ ¬has wing shape roundedwings ∧ ¬has bill color black

Laysan Albatross↔ has crown color white ∧ has wing pattern solid ∧ ¬has under tail color white

Sooty Albatross↔ has upper tail color grey ∧ has size medium 9 16 in ∧ has bill color black ∧ ¬has belly color white

Groove billed Ani ↔ has breast color black ∧ has leg color black ∧ ¬has bill shape allpurpose ∧
¬has bill length about the same as head ∧ ¬has wing shape roundedwings

Crested Auklet↔ has nape color black ∧ ¬has eye color black ∧ ¬has belly color white

Least Auklet↔ has breast color black ∧ has breast color white ∧ ¬has nape color white ∧ ¬has size small 5 9 in

Parakeet Auklet↔ has size medium 9 16 in ∧ has primary color white ∧ has leg color grey

Rhinoceros Auklet↔ has size medium 9 16 in ∧ has leg color buff

Brewer Blackbird ↔ has breast color black ∧ has wing shape roundedwings ∧ ¬has bill length about the same as head ∧
¬has shape perchinglike

Red winged Blackbird↔ has belly color black ∧ has wing pattern multicolored ∧ ¬has wing color white

Rusty Blackbird↔ has back color brown ∧ has belly color black ∧ ¬has crown color brown

Yellow headed Blackbird↔ has forehead color yellow ∧ has primary color black

Bobolink↔ has belly color black ∧ ¬has upper tail color grey ∧ ¬has upper tail color black

Indigo Bunting↔ has forehead color blue ∧ has back pattern solid ∧ has wing pattern multicolored

Lazuli Bunting↔ has leg color black ∧ has bill color grey ∧ ¬has under tail color white

Painted Bunting↔ has nape color blue ∧ has leg color grey ∧ has bill color grey

Cardinal ↔ has forehead color red ∧ has wing shape roundedwings ∧ has wing pattern multicolored ∧
¬has nape color black

Spotted Catbird ↔ has leg color grey ∧ ¬has breast pattern solid ∧ ¬has breast color black ∧ ¬has belly color white ∧
¬has crown color black

Gray Catbird↔ has under tail color grey ∧ has belly color grey ∧ has crown color black ∧ ¬has primary color black

Yellow breasted Chat ↔ has primary color yellow ∧ has bill color black ∧ ¬has back color grey ∧ ¬has throat color grey
∧ ¬has throat color black ∧ ¬has nape color yellow ∧ ¬has belly color white

Eastern Towhee↔ has breast color black ∧ has nape color black ∧ ¬has belly color black ∧ ¬has tail pattern multicolored
∧ ¬has primary color white

Chuck will Widow ↔ has under tail color brown ∧ has belly color buff ∧ has crown color brown ∧
¬has bill shape allpurpose

Brandt Cormorant↔ has bill shape hooked seabird ∧ has breast color black ∧ ¬has wing shape roundedwings

Red faced Cormorant↔ has belly color black ∧ ¬has size small 5 9 in ∧ ¬has bill color black

Pelagic Cormorant ↔ has size medium 9 16 in ∧ has leg color black ∧ ¬has bill shape hooked seabird ∧
¬has tail shape notched tail ∧ ¬has belly color white ∧ ¬has wing shape roundedwings

Bronzed Cowbird ↔ has belly color black ∧ has shape perchinglike ∧ has wing pattern solid ∧ ¬has bill shape allpurpose
∧ ¬has underparts color yellow ∧ ¬has bill length about the same as head

Shiny Cowbird ↔ has belly color black ∧ has shape perchinglike ∧ has wing pattern solid ∧
¬has wing shape roundedwings

Brown Creeper↔ has nape color buff ∧ ¬has shape perchinglike
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American Crow ↔ has belly color black ∧ has shape perchinglike ∧ ¬has breast color buff ∧
¬has bill length shorter than head

Fish Crow ↔ has bill shape allpurpose ∧ has bill length about the same as head ∧ ¬has under tail color grey ∧
¬has belly color white ∧ ¬has shape perchinglike

Black billed Cuckoo↔ has leg color grey ∧ has crown color brown

Mangrove Cuckoo↔ has belly color buff ∧ has leg color grey ∧ ¬has back color black

Yellow billed Cuckoo↔ has shape perchinglike ∧ has tail pattern solid ∧ has primary color white ∧ ¬has bill color black

Gray crowned Rosy Finch↔ has under tail color black ∧ has crown color grey ∧ has wing pattern striped

Purple Finch↔ has forehead color red ∧ ¬has wing shape roundedwings ∧ ¬has belly pattern solid ∧ ¬has bill color black

Northern Flicker↔ has belly color black ∧ has leg color grey ∧ ¬has nape color black

Acadian Flycatcher↔ has breast color white ∧ has leg color black ∧ ¬has under tail color white ∧ ¬has bill color black

Great Crested Flycatcher↔ has tail pattern solid ∧ has primary color grey ∧ has wing pattern striped

Least Flycatcher↔ has tail shape notched tail∧ has tail pattern solid∧¬has bill shape cone∧¬has underparts color black
∧ ¬has back color brown ∧ ¬has breast color yellow ∧ ¬has throat color black ∧ ¬has bill length about the same as head
∧ ¬has primary color buff ∧ ¬has leg color black

Olive sided Flycatcher↔ has belly color grey ∧ has belly color white

Scissor tailed Flycatcher ↔ has forehead color white ∧ ¬has under tail color white ∧ ¬has shape perchinglike ∧
¬has tail pattern solid

Vermilion Flycatcher ↔ has upper tail color black ∧ has wing shape roundedwings ∧ has leg color black ∧
¬has belly color white ∧ ¬has back pattern striped ∧ ¬has primary color black

Yellow bellied Flycatcher↔ has tail shape notched tail ∧ has wing pattern multicolored ∧ ¬has wing shape roundedwings
∧ ¬has primary color yellow ∧ ¬has bill color black

Frigatebird↔ has underparts color black ∧ has underparts color white ∧ has head pattern plain ∧ ¬has shape perchinglike

Northern Fulmar↔ has under tail color white ∧ has crown color white ∧ ¬has upper tail color white

Gadwall ↔ has under tail color black ∧ has size medium 9 16 in ∧ has bill color black ∧ ¬has leg color grey ∧
¬has crown color black

American Goldfinch ↔ has under tail color black ∧ has back pattern solid ∧ has wing pattern multicolored ∧
¬has belly color white ∧ ¬has bill color black

European Goldfinch↔ has leg color buff ∧ has wing pattern multicolored ∧ ¬has tail pattern solid

Boat tailed Grackle ↔ has throat color black ∧ has wing shape roundedwings ∧ ¬has bill length shorter than head ∧
¬has size small 5 9 in ∧ ¬has size medium 9 16 in

Eared Grebe↔ has belly color grey ∧ has primary color black ∧ ¬has tail pattern solid

Horned Grebe ↔ has primary color black ∧ has bill color black ∧ ¬has nape color black ∧ ¬has size small 5 9 in ∧
¬has belly pattern solid

Pied billed Grebe↔ has under tail color brown ∧ has size medium 9 16 in

Western Grebe ↔ has size medium 9 16 in ∧ has primary color white ∧ ¬has throat color black ∧
¬has under tail color white

Blue Grosbeak↔ has under tail color black ∧ has bill color grey ∧ ¬has tail pattern solid ∧ ¬has crown color black

Evening Grosbeak↔ has nape color brown ∧ has tail pattern solid ∧ ¬has nape color buff ∧ ¬has back pattern solid

Pine Grosbeak↔ has under tail color grey ∧ has leg color black ∧ has wing pattern multicolored ∧ ¬has back pattern solid
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Rose breasted Grosbeak ↔ has bill shape cone ∧ has wing shape roundedwings ∧ has primary color white ∧
¬has nape color buff

Pigeon Guillemot↔ has underparts color black ∧ has size medium 9 16 in ∧ ¬has leg color black

California Gull↔ has under tail color black ∧ has wing pattern solid ∧ ¬has back pattern solid

Glaucous winged Gull↔ has upper tail color white ∧ has under tail color grey

Heermann Gull↔ has nape color grey ∧ has crown color white ∧ ¬has shape perchinglike

Herring Gull↔ has size medium 9 16 in ∧ has primary color grey ∧ has wing pattern solid ∧ ¬has upper tail color grey
∧ ¬has upper tail color black

Ivory Gull↔ has leg color black ∧ has bill color grey ∧ ¬has shape perchinglike

Ring billed Gull↔ has under tail color white ∧ has bill color black ∧ ¬has head pattern plain ∧ ¬has forehead color black
∧ ¬has shape perchinglike ∧ ¬has wing pattern striped

Slaty backed Gull ↔ has upperparts color black ∧ has forehead color white ∧ has size medium 9 16 in ∧
¬has upper tail color grey

Western Gull↔ has crown color white ∧ ¬has shape perchinglike ∧ ¬has back pattern solid

Anna Hummingbird↔ has size very small 3 5 in ∧ ¬has breast color white ∧ ¬has wing shape roundedwings

Ruby throated Hummingbird ↔ has belly color white ∧ has leg color black ∧ ¬has wing shape roundedwings ∧
¬has size small 5 9 in ∧ ¬has back pattern solid

Rufous Hummingbird↔ has size very small 3 5 in ∧ has wing pattern multicolored ∧ ¬has shape perchinglike

Green Violetear↔ has nape color blue ∧ ¬has bill length shorter than head

Long tailed Jaeger ↔ (has wing color grey ∧ has under tail color black ∧ ¬has back color grey ∧
¬has bill length shorter than head) ∨ (has under tail color black ∧ ¬has wing color black ∧ ¬has back color grey ∧
¬has size small 5 9 in ∧ ¬has primary color brown)

Pomarine Jaeger ↔ has size medium 9 16 in ∧ has leg color black ∧ has crown color black ∧ ¬has breast color black ∧
¬has under tail color white

Blue Jay↔ has forehead color blue ∧ has under tail color black ∧ has leg color black

Florida Jay↔ has breast pattern multicolored ∧ has back pattern multicolored

Green Jay↔ has under tail color yellow ∧ has leg color grey ∧ ¬has nape color grey ∧ ¬has crown color black

Dark eyed Junco↔ has underparts color white ∧ has throat color grey

Tropical Kingbird ↔ has forehead color grey ∧ has primary color yellow ∧ has bill color black ∧
¬has back pattern multicolored

Gray Kingbird↔ has forehead color grey ∧ ¬has bill length shorter than head ∧ ¬has under tail color black

Belted Kingfisher ↔ has breast pattern multicolored ∧ has wing shape roundedwings ∧ ¬has back color black ∧
¬has bill length shorter than head

Green Kingfisher↔ has throat color white ∧ has tail pattern solid ∧ ¬has breast color white ∧ ¬has belly pattern solid

Pied Kingfisher↔ has breast color black ∧ has wing shape roundedwings ∧ has leg color black ∧ ¬has wing pattern solid
∧ ¬has wing pattern striped ∧ ¬has wing pattern multicolored

Ringed Kingfisher ↔ has size small 5 9 in ∧ has primary color grey ∧ ¬has nape color grey ∧
¬has wing shape roundedwings ∧ ¬has wing pattern multicolored

White breasted Kingfisher↔ has crown color brown ∧ has wing pattern multicolored

Red legged Kittiwake ↔ has wing color white ∧ has bill length shorter than head ∧ ¬has tail shape notched tail
∧ ¬has forehead color blue ∧ ¬has forehead color grey ∧ ¬has nape color brown ∧ ¬has back pattern striped ∧
¬has tail pattern multicolored ∧ ¬has crown color black
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Horned Lark ↔ has primary color buff ∧ ¬has under tail color black ∧ ¬has wing shape roundedwings ∧
¬has back pattern solid ∧ ¬has wing pattern striped

Pacific Loon↔ has size medium 9 16 in ∧ has leg color grey ∧ ¬has belly pattern solid

Mallard↔ has breast color brown ∧ has wing pattern multicolored ∧ ¬has forehead color yellow

Western Meadowlark↔ has belly color yellow ∧ has leg color buff ∧ has bill color grey

Hooded Merganser↔ has tail pattern solid ∧ has bill color black ∧ ¬has eye color black

Red breasted Merganser ↔ has forehead color black ∧ ¬has belly color white ∧ ¬has belly pattern solid ∧
¬has wing pattern striped

Mockingbird↔ has forehead color grey ∧ has wing shape roundedwings ∧ ¬has upperparts color grey

Nighthawk↔ has breast color brown ∧ ¬has underparts color brown ∧ ¬has belly pattern solid

Clark Nutcracker ↔ has forehead color grey ∧ has leg color grey ∧ has wing pattern multicolored ∧
¬has primary color yellow

White breasted Nuthatch ↔ has back pattern multicolored ∧ has tail pattern multicolored ∧ ¬has nape color white ∧
¬has belly color yellow

Baltimore Oriole↔ has breast color yellow ∧ has under tail color yellow ∧ ¬has wing shape roundedwings

Hooded Oriole↔ has breast color yellow ∧ has back pattern solid ∧ has tail pattern solid ∧ has wing pattern multicolored

Orchard Oriole ↔ has leg color grey ∧ has crown color black ∧ has wing pattern multicolored ∧
¬has under tail color yellow ∧ ¬has belly color white

Scott Oriole ↔ has under tail color yellow ∧ has wing pattern multicolored ∧ ¬has back pattern solid ∧
¬has back pattern multicolored

Ovenbird↔ has breast color black ∧ has throat color white ∧ has wing pattern solid ∧ ¬has leg color grey

Brown Pelican↔ has wing pattern solid∧¬has breast pattern solid∧¬has back pattern solid∧¬has primary color yellow

White Pelican ↔ has crown color white ∧ ¬has head pattern plain ∧ ¬has under tail color black ∧
¬has size medium 9 16 in ∧ ¬has shape perchinglike

Western Wood Pewee↔ has tail pattern solid ∧ has bill color black ∧ has crown color grey ∧ ¬has under tail color grey ∧
¬has wing shape roundedwings

Sayornis↔ has upper tail color brown ∧ has head pattern plain

American Pipit ↔ has nape color buff ∧ has wing shape roundedwings ∧ ¬has belly pattern solid ∧
¬has primary color brown

Whip poor Will ↔ has wing shape roundedwings ∧ ¬has belly color white ∧ ¬has shape perchinglike ∧
¬has leg color black ∧ ¬has crown color brown ∧ ¬has wing pattern solid

Horned Puffin↔ has throat color black ∧ has eye color black ∧ ¬has breast color black ∧ ¬has wing shape roundedwings
∧ ¬has shape perchinglike

Common Raven ↔ has wing shape roundedwings ∧ has size medium 9 16 in ∧ ¬has bill shape hooked seabird ∧
¬has shape perchinglike

White necked Raven↔ has nape color white ∧ ¬has throat color white ∧ ¬has size small 5 9 in

American Redstart ↔ has underparts color black ∧ has wing pattern multicolored ∧ ¬has belly color black ∧
¬has leg color grey ∧ ¬has crown color grey

Geococcyx↔ has nape color brown ∧ has leg color grey ∧ ¬has primary color white

Loggerhead Shrike ↔ has nape color grey ∧ has tail pattern multicolored ∧ ¬has tail shape notched tail ∧
¬has breast color yellow ∧ ¬has bill length about the same as head
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Great Grey Shrike ↔ has forehead color grey ∧ has wing shape roundedwings ∧ has wing pattern multicolored ∧
¬has upperparts color white ∧ ¬has back pattern multicolored

Baird Sparrow↔ has back color brown ∧ has tail shape notched tail ∧ ¬has wing shape roundedwings

Black throated Sparrow ↔ has forehead color grey ∧ has belly color white ∧ ¬has throat color white ∧
¬has wing pattern multicolored

Brewer Sparrow ↔ has wing shape roundedwings ∧ has back pattern striped ∧ has primary color buff ∧
¬has under tail color brown ∧ ¬has size very small 3 5 in ∧ ¬has primary color brown ∧ ¬has crown color black

Chipping Sparrow↔ has nape color grey ∧ has back pattern striped ∧ ¬has upper tail color buff

Clay colored Sparrow ↔ has throat color white ∧ has forehead color brown ∧ has primary color buff ∧
¬has nape color brown

House Sparrow ↔ has back pattern striped ∧ has bill color black ∧ ¬has breast color yellow ∧ ¬has forehead color black
∧ ¬has leg color grey

Field Sparrow↔ has belly color buff ∧ has wing pattern striped ∧ ¬has leg color buff

Fox Sparrow↔ has breast pattern striped ∧ ¬has back pattern solid ∧ ¬has wing pattern striped

Grasshopper Sparrow↔ has under tail color buff ∧ has belly color buff ∧ has leg color buff

Harris Sparrow↔ has nape color buff ∧ has primary color white

Henslow Sparrow↔ has breast color black ∧ has leg color buff ∧ ¬has primary color yellow

Le Conte Sparrow ↔ has wing shape roundedwings ∧ has back pattern striped ∧ ¬has back color brown ∧
¬has bill color black

Lincoln Sparrow ↔ has size very small 3 5 in ∧ has wing pattern striped ∧ ¬has belly pattern solid ∧
¬has crown color white

Nelson Sharp tailed Sparrow ↔ has back pattern striped ∧ ¬has nape color buff ∧ ¬has size small 5 9 in ∧
¬has crown color black

Savannah Sparrow ↔ has back pattern striped ∧ ¬has back color buff ∧ ¬has under tail color black ∧
¬has belly pattern solid ∧ ¬has leg color black

Seaside Sparrow ↔ has shape perchinglike ∧ has tail pattern solid ∧ ¬has belly pattern solid ∧ ¬has bill color black ∧
¬has wing pattern solid

Song Sparrow↔ has nape color buff ∧ has back pattern striped ∧ ¬has forehead color black ∧ ¬has primary color buff

Tree Sparrow ↔ has tail shape notched tail ∧ has belly color white ∧ has back pattern striped ∧ ¬has back color buff ∧
¬has under tail color brown

Vesper Sparrow↔ has breast color white ∧ has back pattern striped ∧ has leg color buff ∧ ¬has under tail color buff

White crowned Sparrow↔ has forehead color black ∧ has nape color grey ∧ ¬has leg color buff

White throated Sparrow↔ has forehead color yellow ∧ has primary color brown

Cape Glossy Starling↔ has nape color blue ∧ has wing pattern solid

Bank Swallow ↔ has bill shape cone ∧ has breast color white ∧ has bill color black ∧ ¬has forehead color blue ∧
¬has forehead color black ∧ ¬has wing pattern solid

Barn Swallow ↔ has back pattern solid ∧ has primary color black ∧ has bill color black ∧ ¬has belly color black ∧
¬has shape perchinglike ∧ ¬has leg color black

Cliff Swallow↔ has belly color buff ∧ has tail pattern solid ∧ ¬has back pattern solid

Tree Swallow ↔ has primary color white ∧ has bill color black ∧ ¬has upperparts color black ∧
¬has size medium 9 16 in ∧ ¬has primary color brown
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Scarlet Tanager ↔ has upperparts color black ∧ has forehead color red ∧ ¬has bill length about the same as head ∧
¬has under tail color white

Summer Tanager↔ has tail shape notched tail ∧ has leg color grey ∧ ¬has throat color white ∧ ¬has forehead color black
∧ ¬has primary color grey

Artic Tern↔ has head pattern capped ∧ has nape color black ∧ ¬has bill shape dagger ∧ ¬has upper tail color black

Black Tern↔ has belly color black ∧ ¬has under tail color black ∧ ¬has wing shape roundedwings

Caspian Tern↔ has head pattern capped ∧ has size medium 9 16 in ∧ has wing pattern solid ∧ ¬has nape color black

Common Tern↔ has wing color grey ∧ has back color white ∧ ¬has forehead color white

Elegant Tern↔ has forehead color white ∧ has size medium 9 16 in ∧ ¬has head pattern plain

Forsters Tern↔ has head pattern capped ∧ has nape color black ∧ has bill color black ∧ ¬has upper tail color black

Least Tern↔ has forehead color white ∧ has crown color black ∧ has wing pattern solid

Green tailed Towhee ↔ has wing shape roundedwings ∧ has bill color grey ∧ ¬has throat color yellow ∧
¬has nape color blue ∧ ¬has nape color brown

Brown Thrasher↔ has nape color brown ∧ ¬has forehead color brown ∧ ¬has belly color yellow ∧ ¬has leg color grey ∧
¬has wing pattern striped

Sage Thrasher↔ has wing pattern striped ∧ ¬has eye color black

Black capped Vireo↔ has nape color black ∧ has size very small 3 5 in ∧ has leg color grey

Blue headed Vireo↔ has primary color grey ∧ has leg color grey ∧ has wing pattern striped

Philadelphia Vireo↔ has nape color grey ∧ has size very small 3 5 in ∧ has bill color grey

Red eyed Vireo↔ has upperparts color buff ∧ has forehead color grey

Warbling Vireo↔ has nape color grey ∧ has size very small 3 5 in ∧ has primary color buff ∧ ¬has under tail color buff

White eyed Vireo↔ has tail shape notched tail ∧ has tail pattern multicolored ∧ ¬has upperparts color black

Yellow throated Vireo↔ has nape color yellow ∧ has belly color white

Bay breasted Warbler↔ has wing shape roundedwings ∧ has back pattern striped ∧ has leg color grey

Black and white Warbler↔ has size very small 3 5 in ∧ has wing pattern striped ∧ ¬has primary color buff

Black throated Blue Warbler ↔ has primary color black ∧ has wing pattern multicolored ∧ ¬has breast color yellow ∧
¬has under tail color black

Blue winged Warbler ↔ has back color grey ∧ ¬has nape color grey ∧ ¬has back pattern striped ∧
¬has primary color grey ∧ ¬has crown color black

Canada Warbler ↔ has under tail color grey ∧ has nape color grey ∧ has belly color yellow ∧
¬has back pattern multicolored ∧ ¬has primary color grey

Cape May Warbler↔ has back pattern striped ∧ has bill color black ∧ ¬has belly color white ∧ ¬has belly pattern solid

Cerulean Warbler↔ has nape color blue ∧ has size very small 3 5 in ∧ has shape perchinglike

Chestnut sided Warbler ↔ has underparts color white ∧ has upper tail color grey ∧ ¬has wing color white ∧
¬has bill length about the same as head ∧ ¬has belly color grey ∧ ¬has back pattern solid ∧ ¬has primary color yellow

Golden winged Warbler↔ has forehead color yellow ∧ has wing pattern multicolored ∧ ¬has primary color yellow

Hooded Warbler↔ has forehead color yellow ∧ has primary color yellow ∧ has leg color buff ∧ has crown color black

Kentucky Warbler↔ has size small 5 9 in ∧ has primary color yellow ∧ has leg color buff ∧ has crown color black

Magnolia Warbler↔ has forehead color grey ∧ has primary color black

Mourning Warbler↔ has forehead color grey ∧ has leg color buff
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Myrtle Warbler↔ has leg color black ∧ has wing pattern striped ∧ ¬has tail pattern solid

Nashville Warbler↔ has under tail color yellow ∧ has back pattern multicolored ∧ ¬has crown color black

Orange crowned Warbler ↔ has bill shape allpurpose ∧ has tail pattern multicolored ∧ ¬has breast color yellow ∧
¬has primary color white ∧ ¬has crown color grey ∧ ¬has crown color black

Palm Warbler↔ has primary color yellow ∧ has wing pattern striped ∧ ¬has belly color yellow

Pine Warbler↔ has forehead color yellow ∧ has under tail color grey ∧ has bill color grey

Prairie Warbler↔ has size very small 3 5 in ∧ has crown color yellow

Prothonotary Warbler ↔ has under tail color black ∧ has tail pattern solid ∧ has leg color grey ∧
¬has upperparts color black

Swainson Warbler ↔ has tail shape notched tail ∧ has bill length about the same as head ∧ ¬has nape color grey ∧
¬has primary color black

Tennessee Warbler↔ has upper tail color grey ∧ has primary color yellow ∧ ¬has breast color yellow

Wilson Warbler↔ has under tail color yellow ∧ has crown color black ∧ ¬has leg color grey

Worm eating Warbler↔ has crown color yellow ∧ ¬has primary color yellow ∧ ¬has bill color black

Yellow Warbler↔ has under tail color yellow ∧ has wing pattern striped

Northern Waterthrush ↔ has size small 5 9 in ∧ has tail pattern solid ∧ has leg color buff ∧ ¬has breast color yellow ∧
¬has primary color grey

Louisiana Waterthrush↔ has breast pattern striped ∧ has wing pattern solid ∧ ¬has nape color brown

Bohemian Waxwing↔ has upper tail color grey ∧ has wing pattern multicolored ∧ ¬has under tail color grey

Cedar Waxwing↔ has nape color buff ∧ has wing pattern multicolored

American Three toed Woodpecker↔ has under tail color white ∧ has tail pattern solid ∧ has leg color grey

Pileated Woodpecker↔ has nape color white ∧ has leg color grey ∧ ¬has primary color white

Red bellied Woodpecker↔ has forehead color red ∧ has wing pattern striped

Red cockaded Woodpecker↔ has head pattern capped ∧ has belly color black

Red headed Woodpecker↔ has forehead color red ∧ has back pattern solid ∧ has wing pattern multicolored

Downy Woodpecker↔ has under tail color white ∧ has back pattern multicolored ∧ ¬has wing pattern multicolored

Bewick Wren↔ has under tail color brown ∧ has under tail color black

Cactus Wren↔ has nape color white ∧ ¬has belly color white ∧ ¬has back pattern solid

Carolina Wren↔ has breast color buff ∧ has bill color grey ∧ ¬has leg color grey

House Wren↔ has breast color buff ∧ ¬has forehead color black ∧ ¬has wing shape roundedwings ∧ ¬has leg color black
∧ ¬has wing pattern solid

Marsh Wren↔ has nape color buff ∧ has belly color white ∧ has belly color buff

Rock Wren↔ has under tail color buff ∧ has size very small 3 5 in ∧ ¬has crown color brown

Winter Wren↔ has breast pattern solid ∧ has breast color buff ∧ ¬has belly pattern solid

Common Yellowthroat↔ has forehead color black ∧ has under tail color yellow ∧ ¬has crown color black
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