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Abstract

Deep learning methods are highly accurate, yet
their opaque decision process prevents them from
earning full human trust. Concept-based mod-
els aim to address this issue by learning tasks
based on a set of human-understandable concepts.
However, state-of-the-art concept-based models
rely on high-dimensional concept embedding rep-
resentations which lack a clear semantic mean-
ing, thus questioning the interpretability of their
decision process. To overcome this limitation,
we propose the Deep Concept Reasoner (DCR),
the first interpretable concept-based model that
builds upon concept embeddings. In DCR, neural
networks do not make task predictions directly,
but they build syntactic rule structures using con-
cept embeddings. DCR then executes these rules
on meaningful concept truth degrees to provide
a final interpretable and semantically-consistent
prediction in a differentiable manner. Our experi-
ments show that DCR: (i) improves up to +25%
w.r.t. state-of-the-art interpretable concept-based
models on challenging benchmarks (ii) discovers
meaningful logic rules matching known ground
truths even in the absence of concept supervision
during training, and (iii), facilitates the generation
of counterfactual examples providing the learnt
rules as guidance.

1. Introduction

The opaque decision process of deep learning (DL) models
has failed to inspire human trust despite their state-of-the-art
performance across multiple tasks (Rudin} 2019; |Bussone
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et al.,|2015), raising ethical (Duran & Jongsma,|2021;|Lo Pi
anoj 2020) and legal (Wachter et al.,[2017; [ EUGDPR.[2017)
concerns. For this reason, interpretability is now a core
research topic in the field of responsible Al (Rudin| 2019).

Concept-based models (Kim et al.||2018; |Chen et al., [2020)
aim to increase human trust in deep learning models by
using human-understandable concepts to train interpretable
models—such as logistic regression or decision trees (Rudin),
2019; |[Koh et al., [2020; |Kazhdan et al., |2020) (Figure E])
This approach significantly increases human trust in the Al
predictor (Rudin, 20195 |[Shen, 2022) as it allows users to
clearly understand a model’s decision process. However,
state-of-the-art concept-based models, which rely on con-
cept embeddings (Yeh et al., 2020; Kazhdan et al., [2020;
Mahinpei et al.| 2021} [Espinosa Zarlenga et al., 2022) to
attain high performance, are not completely interpretable.
Indeed, concept embeddings lack clear semantics on individ-
ual dimensions, e.g., €yellow = [2.3,0.3,=3.5,. .. 1T does
not have semantics assigned to each of its dimensions. This
sacrifice of interpretability in favour of model capacity leads
to a possible reduction in human trust when using these
models, as argued by Rudin|(2019); [Mahinpei et al.[(2021).

In this paper, we propose the Deep Concept Reasonelﬂ
(DCR, Section [3), the first interpretable concept-based
model building on concept embeddings. DCR applies dif-
ferentiable and learnable modules on concept embeddings
to build a set of fuzzy rules which can then be executed on
semantically meaningful concept truth degrees to provide a
final interpretable prediction. Our experiments (Section [4)
show that DCR: (i) attains better task accuracy than state-of-
the-art interpretable concept-based models (Figure[T)), (ii)
discovers meaningful logic rules, matching known ground
truths even in absence of training concept supervision, and
(iii) facilitates the generation of counterfactual examples
thanks to the highly-interpretable learnt rules.

!Code available in public repository: https://github)
com/pietrobarbiero/pytorch_explain,
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Figure 1. (a) An interpretable concept-based model f maps concepts C to tasks V' generating an interpretable rule. When input features
are not semantically meaningful, a concept encoder g can map raw features to a concept space. (b) The proposed approach (DCR)
outperforms interpretable concept-based models in the Dot dataset. CE stands for concept embeddings and CT for concept truth values.

2. Preliminaries

Concept-based models Concept-based models f : C' —
Y learn a map from a concept space C' to a task space
Y (Yeh et al., 2020). If concepts are semantically mean-
ingful, then humans can interpret this mapping by tracing
back predictions to the most relevant concepts (Ghorbani
et al., [2019a). When the features of the input space are
hard for humans to reason about (such as pixel intensities),
concept-based models work on the output of a concept-
encoder mapping g : X — C from the input space X to
the concept space C' (Ghorbani et al., 2019b; [Koh et al.}
2020). In general, training a concept-based model may
require a dataset where each sample consists of input fea-
tures x € X C R" (e.g., an image’s pixels), k& ground
truth concepts ¢ € C C {0,1}* (i.e., a binary vector
with concept annotations, when available) and o task la-
belsy € Y C {0,1}° (e.g., an image’s classes). During
training, a concept-based model is encouraged to align its
predictions to task labelsi.e.,y ~ § = f(g(x)). Similarly,
a concept encoder can be supervised when concept labels
are available i.e., ¢ = ¢ = g(x). When concept labels are
not available, they can still be extracted from pre-trained
models associating concept labels to clusters found in their
embeddings as proposed by |Ghorbani et al.[(2019b); |[Magis{
ter et al.|(2021)). We indicate concept and task predictions

as ¢; = (g(x)),; and g; = (f(€)), respectively.

Concept truth values vs. concept embeddings Usually,
concept-based models represent concepts using their truth
degree, that is, ¢1,...,¢; € [0,1]. However, this repre-
sentation might significantly degrade task accuracy as ob-
served by Mahinpei et al.| (2021) and |[Espinosa Zarlenga
et al.| (2022)). To overcome this issue, concept-based mod-
els may represent concepts using concept embeddings
¢, € R™ alongside their truth degrees é; € [0, 1]E| While

>With an abuse of notation, we use the same symbol for a
concept embedding and its corresponding truth degree, with the

this increases task accuracy of concept-based models (Es-
pinosa Zarlenga et al., [2022), it also weakens their inter-
pretability as concept embeddings lack clear semantics.

Fuzzy logic rules Continuous fuzzy logics (Hajek, 2013)
extend Boolean logic by relaxing discrete truth-values in
{0, 1} to truth degrees in [0, 1], and Boolean connectives
to (differentiable) real-valued operators. In particular, a
t-norm A : [0,1] x [0,1] — [0, 1] generalises the Boolean
conjunction while a t-conorm V : [0, 1] x [0,1] — [0, 1]
generalises the disjunction. These two operators are con-
nected by the strong negation —, defined as - = 1 — .
For example, the product (fuzzy) logic can be defined by
the operators t Ay :=x-yandxVy:=x+y — xy. As
in Boolean logic, the syntax of a t-norm fuzzy rule includes:
(i) Atomic formulas consisting of propositional variables z,
and logical constants 1 (false, “0”) and T (true, “17),
(ii) Literals representing atomic formulas or their negation,
and (iii) Logical connectives -, A\, V, =, < joining formu-
las in arbitrarily complex compound formulas.

3. Deep Concept Reasoning

Here we describe the “Deep Concept Reasoner” (DCR, Fig-
ure[2)), the first interpretable concept-based model based on
concept embeddings. Similarly to existing models based
on concept embeddings, DCR exploits high-dimensional
representations of the concepts. However, in DCR, such
representations are only used to compute a logic rule. The
final prediction is then obtained by evaluating such rules
on the concepts’ truth values and not on their embeddings,
thus maintaining clear semantics and providing a totally
interpretable decision. Being differentiable, DCR is train-
able as an independent module on concept databases, but
it can also be trained end-to-end with differentiable con-
cept encoders. In the following section, we describe (1) the

former in bold to distinguish it.
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syntax of the rules we aim to learn (Section @, (2) how
to (neurally) generate and execute learnt rules to predict
task labels (Section[3.2)), (3) how DCR learns simple rules
in specific t-norm semantics (Section [3.2), and (4) how we
can generate global and counterfactual explanations with
DCR (Section [3.4). We provide Figure 2] as a reference to
graphically follow the discussion.

3.1. Rule syntax

To understand the rationale behind DCR’s design, we begin
with an illustrative toy example:

Example 3.1. Consider the problem of defining the fruit
“banana” given the vocabulary of concepts “soft”, “round”,
and “yellow”. A simple definition can be Ypunana <
“Cround /\ Cyeliow- From this rule we can deduce that (i) being
“soft” is irrelevant for being a “banana” (indeed bananas
can be both soft or hard), and (ii) being both “not round”

and “yellow” is relevant to being a “banana’.

As in this example, DCR rules can express whether a con-
cept is relevant or not (e.g., “soft”), and whether a con-
cept plays a positive (e.g., “yellow”) or negative (e.g., “not
round”) role. To formalize this description of rule syntax,
we let [;; denote the literal of concept ¢; (i.e., & or —¢&;)
representing the role of the concept ¢ for the j-th class. Sim-
ilarly, we let r;; € {0, 1} representing whether ¢&; is relevant
for predicting the class y;. For each sample x and predicted
class §j;, DCR learns a rule with the following synta

e N\ b ¢))

% ’I"]’izl

Such a rule defines a logical statement for why a given
sample is predicted to have label §j; using a conjunction of
relevant concept literals (i.e., ¢; or —¢;).

3.2. Rule generation and execution

Having defined the syntax of DCR rules, we describe how
to generate and execute these rules in a differentiable way.
To generate a rule we use two neural modules ¢; and 1),
which determine the role and relevance of each concept,
respectively. Then, we execute each rule using the concepts’
truth degrees of a given sample. We split this process into
three steps: (i) learning each concept’s roles, (ii) learning
each concept’s relevance, and (iii) predicting the task using
the relevant concepts.

Concept role Generation: To determine the role (posi-
tive/negative) of a concept, we use a feed-forward neural
network ¢; : R™ — [0, 1], with m being the dimension
of each concept embedding. The neural model ¢; takes as

3Here and in all equations we omit the explicit dependence on
x for simplicity, i.e., we write §; for §;(x).

input a concept embedding ¢; € R™ and returns a soft indi-
cator representing the role of the concept in the formula, that
is, whether in literal /;; the concept should appear negated
(e-g~, ¢banana(éraund) = O) or not (C.g., (Zsbanana(éyellow) =1D.
Execution: When we execute the rule, we need to compute
the actual truth degree of a literal [;; given its role ¢(¢;).
We define this truth degree ¢;;, € [0,1]. In particular, we
want to (i) forward the same truth degree of the concept, i.e.
;i = ¢, when ¢(¢;) = 1, and (ii) negate it, i.e. £;; = —¢;,
when ¢(¢;) = 0. This behaviour can be generalized by a
fuzzy equality <> when both ¢; and ¢ are fuzzy values, i.e.:

Lii = (¢5(&;) & &) (2)
Example 3.2. For a given object consider Crpyng = 0
and ¢bununa(émund> = 0. Then we get Zbanana,rouml -

(¢hanana(émund) = éround) = _‘émund =1 Ifinsmad we had
d)hanana(émund) - 1: then gbanana,mund = (¢banana(éround) =
éround) =0.

Concept relevance. Generation: To determine the rele-
vance of a concept ¢;, we use another feed-forward neu-
ral network ¢; : R™ — [0,1]. The model %; takes as
input a concept embedding ¢, € R™ and returns a soft
indicator representing the likelihood of a concept being rel-
evant for the formula (e.g., Ypanana(Csopr) = 1) or not (e.g.,
Wpanana(Eyetiow) = 0). Execution: When we execute the rule,
we need to compute the truth degree of a literal given its
relevance r;;. We define the truth degree of a relevant literal
as E;i € [0, 1], where r stands for “relevant”. In particular,
we want to (i) filter irrelevant concepts when ;(¢;) = 0
by setting ¢7; = 1, and (ii) retain relevant literals when
¥j(€;) = 1 by setting £7, = £;;. This behaviour can be
generalized to fuzzy values of 1), as follows:

0= (V&) = £i) = (—¥5(€:) V Lj5) (3)

Note that setting ¢7; = 1 makes the literal /;; irrelevant
since “1” is neutral w.r.t. the conjunction in Equation 4]

Example 3.3. For a given object of type “banana’, let
the concept “soft” be irrelevant, that is Vpanana(Csofr) = 0.
Then we get Ezan[ma,soft = (wbanana(éwft) = gbanana,saﬁ) =
1, independently from the content of Cypn OF Lhanana,soft-
Conversely, let the concept “yellow” by relevant, that
i Vpanana(Cyettow) = 1, and let its concept literal be
ébanana,yellow = éyellow = L As a result, we get

ega,m,m,yeugw = (wbananu(cyelluw) = ebanana,yelluw) =1

Task prediction Finally, we conjoin the relevant literals
£7; to obtain the task prediction g;:

k
9=\ i “
=1
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Figure 2. (left) Deep Concept Reasoner (DCR) generates fuzzy logic rules using neural models on concept embeddings. Then DCR
executes the rule using the concept truth degrees to evaluate the rule symbolically. (right) Schema of DCR modules: first neural models ¢

and 1) generate the rule, and then the rule is executed symbolically.

Example 3.4. For a given object of type “banana”
sider the following truth degrees for the concepts: Cso51 =
1,éround = 0,Cyetiow = 1. Consider also the follow-
ing values for the role and relevance of the class “ba-
nana”: ¢banana(éi> = [07 0, ]—] and wbanana(éi) = [07 1, ]—]
for i € {soft, round, yellow}. Then, we obtain the final
prediction for class banana as:

, con-

Zjbanana = /\?:1 ( wbanana(éb) \ (¢banana (éz) <~ éb)) =
—(AVOSIAOVOS0)AOV(le1))=
=(1voOA(OVvI)AOVI)=1A1IA1=1

We remark that the models ¢; and v;: (a) generate fuzzy
logic rules using concept embeddings which might hold
more information than just concept truth degrees, and (b) do
not depend on the number of input concepts which makes
them applicable—without retraining—in testing environ-
ments where the set of concepts available differs from the
set of concepts used during training. We also remark that the
whole process is differentiable as the neural models ¢; and
1p; are differentiable as well as the fuzzy logic operations as
we will see in the next section.

3.3. Rule parsimony and fuzzy semantics

Rule parsimony Simple explanations and logic rules are
easier to interpret for humans (Miller; |1956; Rudin, |2019).
We can encode this behaviour within the DCR architec-
ture by enforcing a certain degree of competition among
concepts to make only relevant concepts survive. To this
end, we design a special activation function for the neural
network 1); rescaling the output of a log-softmax activation:

. < exp(MLP; (&) )
ji = 108 T -
>_ir—1 exp(MLP;(¢;))

L&
i = ;(¢;) = U('Vji % Z 'in’) (6)

=1

&)

This way, if the scores «y;; are uniformly distributed, then we
expect the network 1; to select half of the concepts. We can
also parametrise this function by introducing a parameter
T € [—00, 00] that allows a user to bias the default behaviour
of the activation function: 7;; = o' (7;; — %25:1 Vi) A
user can increase 7 to get more relevance scores closer to 1
(more complex rules) or decrease it to get more relevance
scores closer to 0 (simpler rules).

Fuzzy semantics To create a semantically valid model, we
enforce the same semantic structure in all logic and neural
operations. Moreover, to train our model end-to-end, we
need these semantics to be differentiable in all its operations,
including logic functions. [Marra et al.| (2020c]) describe a set
of possible t-norm fuzzy logics which can serve the purpose.
In our experiments, we use the Godel t-norm. With this
semantics, we can rewrite Equation @] as:

b = ¢j(€) & & = (¢(&) = &) N (& = ¢;(¢)) =
= (mpj(€i) V éi) A (=éi V gj(e:) =
= min{max{1l — ¢;(¢;), &}, max{1 — &, ¢(¢&;)} }

and Equationas: g; = minf_; {max{1 — ;(&;),£;;}}

3.4. Global and counterfactual explanations

Interpreting global behaviour In general, DCR rules
may have different weights and concepts for different sam-
ples. However, we can still globally interpret the predictions
of our model without the need for an external post-hoc ex-
plainer. To this end, we collect a batch of (or all) fuzzy rules
generated DCR on the training data Xj,;,. Following Bar{
biero et al. (2022), we then Booleanize the collected rules
and aggregate them with a global disjunction to get a single
logic formula valid for all samples of class j:

i =V k) @)

X E Xirain
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This way we obtain a global overview of the decision pro-
cess of our model for each class.

Counterfactual explanations Logic rules clearly reveal
which concepts play a key role in a prediction. This trans-
parency, typical of interpretable models, facilitates the ex-
traction of simple counterfactual explanations without the
need for an external algorithm as in |Abid et al.|(2021). In
DCR we extract simple counter-examples x* using the logic
rule as guidance. Following |Wachter et al.|(2017), we gen-
erate counter-examples as close as possible to the original
sample |x —x*| < e. In particular,[Wachter et al.| (2017) pro-
poses to perturb the input features of a model starting from
the most relevant features. As the decision process depends
mostly on the most relevant features, perturbing a small
set of features is usually enough to find counter-examples.
To this end, we first rank the concepts present in the rule
according to their relevance scores. Then, starting from the
most relevant concept, we invert their truth value until the
prediction of the model changes. The new rule represents a
counterfactual explanation for the original prediction.

4. Experiments
4.1. Research questions

In this section, we analyze the following research questions:

* Generalization — How does DCR generalize on un-
seen samples compared to interpretable and neural-
symbolic models? How does DCR generalize when
concepts are unsupervised?

¢ Interpretability — Can DCR discover meaningful
rules? Can DCR re-discover ground-truth rules? How
stable are DCR rules under small perturbations of the
input compared to interpretable models and local post-
hoc explainers? How long does it take to extract a
counterfactual explanation from DCR compared to a
non-interpretable model?

4.2. Experimental setup

Data & task setup We investigate our research questions
using six datasets spanning three of the most common data
types used in deep learning: tabular, image, and graph-
structured data. We use the three benchmark datasets (XOR,
Trigonometry, and Dot) proposed by [Espinosa Zarlenga
et al.| (2022)) as they capture increasingly complex concept-
to-label relationships, therefore challenging concept-based
models. To test the DCR’s ability to re-discover ground-
truth rules we use the MNIST-Addition dataset (Manhaeve
et al.,|2018)), a standard benchmark for neural-symbolic sys-
tems where one aims to predict the sum of two digits from

the MNIST’s dataset. Furthermore, we evaluate our meth-
ods on two real-world benchmark datasets: the Large-scale
CelebFaces Attributes (CelebA, (Liu et al.,|2015)) and the
Mutagenicity (Morris et al., 2020) dataset. In particular, we
define a new CelebA task to simulate a real-world condition
of concept “shifts” where train and test concepts are cor-
related (e.g., “beard” and “mustaches”) but do not match
exactly. To this end, we split the set of CelebA attributes
defined by [Espinosa Zarlenga et al.|(2022) in two partially
disjoint sets and use one set of attributes for training mod-
els and one for testing. Finally, we use Mutagenicity as a
real-world scenario the concept encoder is unsupervised. As
Mutagenicity does not have concept annotations, we first
train a graph neural network (GNN) on this dataset, and
then we use the Graph Concept Explainer (GCExplainer,
(Magister et al., [2021))) to extract a set of concepts from
the embeddings of the trained GNN. For dataset with con-
cept labels instead, we generate concept embeddings and
truth degrees by training a Concept Embedding Model (Es/
pinosa Zarlenga et al.| 2022).

Baselines We compare DCR against interpretable mod-
els, such as logistic regression (Verhulst, 1845), deci-
sion trees (Breimanl 2017), as well as state-of-the-art
black-box classifiers, such as extreme gradient boost-
ing (XGBoost) (Chen & Guestrin, [2016), and locally-
interpretable neural models, such as the Relu Net (Ciravegnal
et al., 2023). We train all baseline models in two differ-
ent conditions mapping concepts to tasks either using con-
cept truth degrees or using concept embeddings (baselines
marked with CT and CFE in figures, respectively). We con-
sider interpretable only baselines trained on concept truth
degrees only, as concept embeddings lack of clear semantics
assigned to each dimension. However, baselines trained
on concept embeddings still provide a strong reference for
task accuracy w.r.t. interpretable models. On the MNIST-
Addition dataset we compare DCR with state-of-the-art
neural-symbolic baselines including: DeepProbLog (Man
haeve et al., 2018)), DeepStochLog (Winters et al., [2022),
Logic Tensor Networks (Badreddine et al.,[2022), and Em-
bed2Sym (Aspis et al.|[2022)). This is possible as the MNIST-
Addition dataset provides access to the full set of ground-
truth rules, allowing us to train these neural-symbolic sys-
tems. Finally, we compare DCR interpretability with inter-
pretable models, such as logistic regression and decision
trees, and with local post-hoc explainers, such as the Local
Interpretable Model-agnostic Explanations (LIME, (Ribeiro
et al.,[2016))) applied on XGBoost.

Evaluation We assess each model’s performance and in-
terpretability based on four criteria. First, we measure task
generalization using the Area Under the Receiver Oper-
ating Characteristic Curve (ROC AUC) from prediction
scores (Hand & Till, 2001) (the higher the better). Second,
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Figure 3. Mean ROC AUC for task predictions for all baselines across all tasks (the higher the better). DCR often outperforms interpretable
concept-based models. CE stands for concept embeddings, while CT for concept truth degrees. Models trained on concept embeddings
are not interpretable as concept embeddings lack a clear semantic for individual embedding dimensions.

we evaluate DCR interpretability by comparing the learnt
logic formulae with ground-truth rules in XOR, Trigonome-
try, and MNIST-Addition datasets, and indirectly on Muta-
genicity by checking whether the learnt rules involve con-
cepts corresponding to functional groups known for their
harmful effects, as done by [Ying et al| (2019). Third, to
further assess interpretability, we measure the sensitivity
of the predictions under small perturbations following
(the lower the better). Finally, we measure how
receptive our model is to extract meaningful counterfactual
examples from its rules by computing the number of concept
perturbations required to obtain a counterfactual example
following [Wachter et al.| (2017) (the lower the better). For
each metric, we report their mean and 95% Confidence In-
tervals (CI) on our test sets using 5 different initialization
seeds. We report further details and results in the appendix.

4.3. Task generalization

DCR outperforms interpretable models (Figure[3) Our
experiments show that DCR generalizes significantly bet-
ter than interpretable benchmarks in our most challenging
datasets. This improvement peaks when concept embed-
dings hold more information than concept truth degrees,
as in the CelebA and Dot tasks where this deficit of in-
formation is imposed byconstruction (Espinosa Zarlenga)
[2022). This grants DCR a significant advantage (up
to ~ 25% improvement in ROC-AUC) over the other in-
terpretable baselines. This phenomenon confirms the find-
ings by [Mahinpei et al| (2021)) and [Espinosa Zarlenga et al |
(2023). In particular, the concept shift in CelebA causes in-
terpretable models to behave almost randomly as the set of
test concepts is different from the set of train concepts (de-
spite being correlated). DCR however still generalizes well
as the mechanism generating rules only depends on concept
embeddings and the embeddings hold more information on
the correlation between train and test concepts w.r.t. concept
truth degrees. To further test this hypothesis, we compare
DCR against XGBoost, decision trees (DTs), and logistic

regression trained on concept embeddings. In most cases,
concept embeddings allow DTs and logistic regression to
improve task generalization, but the predictions of such
models are no longer interpretable. In fact, even a logic
rule whose terms correspond to dimensions of a concept
embedding is not semantically meaningful as discussed in
Section[2] In contrast, DCR uses concept embeddings to as-
semble rules whose terms are concept truth degrees, which
makes it possible to keep the rules semantically meaningful.

DCR matches the accuracy of neural-symbolic systems
trained using human rules (Table[I) Our experiments
show that DCR generates rules that, when applied, obtain
accuracy levels close to neural-symbolic systems trained
using human rules, currently representing the gold standard
to benchmark rule learners. We show this result on the
MNIST-Addition dataset (Manhaeve et al.| [2018)), a standard
benchmark in neural-symbolic Al, where the labels on the
concepts are not available. We learn concepts without su-
pervision by adding another task classifier, which only uses
very crisp ¢; to make the task predictions (see Appendix [H).
DCR achieves similar performance to state-of-the-art neural-
symbolic baselines (within 1% accuracy from the best base-
line). However, DCR is the only system discovering logic
rules directly from data, while all the other baselines are
trained using ground-truth rules. Therefore, this experiment
indicates how DCR can learn meaningful rules also without
concept supervision while still maintaining state-of-the-art
performance.

4.4. Interpretability

DCR discovers semantically meaningful logic rules (Ta-
bleZ) Our experiments show that DCR induces logic rules
that are both accurate in predicting the task and formally
correct when compared to ground-truth logic rules. We
evaluate the formal correctness of DCR rules on the XOR,
Trigonometry, and MNIST-Addition datasets where we have
access to ground-truth logic rules. We report a selection
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Table 1. Task accuracy on the MNIST-addition dataset. The neural-
symbolic baselines use the knowledge of the symbolic task to
distantly supervise the image recognition task. DCR achieves
similar performances even though it learns the rules from scratch.

MODEL ACCURACY (%)
With ground truth rules

DeepProbLog  97.2 £ 0.5

DeepStochLog 97.9 0.1

Embed2Sym 97.7+0.1

LTN 98.0+0.1

Without ground truth rules
DCR(ours) 97.4£0.2

of Booleanized DCR rules with the corresponding ground
truth rules in Table 2] Our results indicate that DCR’s rules
align with human-designed ground truth rules, making them
highly interpretable. For instance, DCR predicts that the
sum of two MNIST digits is 17 if either the first image is

a M (i.e., cg) and the second is an H (i.e., ¢§) or vice-
versa which we can interpret globally using Equation
as: y17 & (co A ) V (cg A cg). We list all logic rules
discovered by DCR on the MNIST-Addition dataset in Ap-
pendix [H] It is interesting to investigate the potential of
DCR also in settings where we do not have access to the
ground-truth logic rules, such as the Mutagenicity dataset.
Here, unlike the MNIST addition dataset, not only there is
no supervision on the concepts, but we don’t even know
which are the concepts. We use GCExplainer (Magister
et al.}2021) to generate a set of concept embeddings from
the embeddings of a trained GNN. We then use these em-
beddings to train DCR. In this setting, we can only evalu-
ate the correctness of a DCR rules indirectly by checking
whether the concepts appearing in the rules correspond to
functional groups known for their harmful effects within
the Mutagenicity dataset following |Ying et al.[(2019). Inter-
estingly, many of DCR’s rules predicting mutagenic effects
include functional groups such as phenols (Hattenschwiler
& Vitousekl, 2000) and dimethylamines (ACGIH®), 2016)),
which can be highly toxic when combined in molecules
such as 3-Dimethylaminophenols (Sabry et al.|[2011)). This
suggests that DCR has the potential to unveil semantically
meaningful relations among concepts and to make them
explicit to humans by means of the learnt rules. We provide
experimental details with the full list of concepts and rules
discovered in Mutagenicity in Appendix [C]

DCR rules are stable under small perturbations (Fig-
ure[d) An important characteristic of local explanations
is to be stable under small perturbations (Yeh et al.,|2019).
Indeed, users do not trust explanations if they change sig-
nificantly on very similar inputs for which the model makes
the same prediction. This metric, also known as explanation
sensitivity, is generally computed as the maximum change

Table 2. Error rate of Booleanised DCR rules w.r.t. ground truth
rules. Error rate represents how often the label predicted by a
Booleanised rule differs from the fuzzy rule generated by our
model. The error rate is reported with the mean and standard error
of the mean. A full list of logic rules for MNIST is in Appendix [H]

GROUND-TRUTH RULE PREDICTED RULE ERROR (%)
XOR
Yo < —co N\ ey Yo < cp N\ cy 0.00 £ 0.00
Yo < co Ny Yo < co N C1 0.00 = 0.00
Y1 < cg N ey Y1 < e N ey 0.02 £ 0.02
Y1 < co N\ ey Y1 < co N\ —Cy 0.01 £0.01
Trigonometry
Yo < —cop A e A\ ce Yo < ¢ A —cp A e 0.00 £0.00
Y1 < co N c1 Ay Y1 < co Nc1 A ey 0.00 £+ 0.00
MNIST-Addition
Y18  Cy A ey Y18 < Cy A ch 0.00 £+ 0.00
Y17  Cy A ey Y17 ¢ cy Nl 0.00 £+ 0.00
Y17 < ¢y A ¢y Y17 — cg A ey 0.00 £ 0.00

in the explanation of a model ®( f) on a slightly perturbed
input (), that is, |2(f(x*)) — ®(f(x))], |x — x*|e0 < €.
We compare the DCR explanations w.r.t. our interpretable
baselines as well as w.r.t. LIME (Ribeiro et al., [2016) ex-
plaining the output of XGBoost. Since we are using different
types of models, we use a normalised version of the sensi-
tivity |P(f(x*)) — ©(f(x))|/|®(f(x))|. We compute the
distance between two explanations considering the feature
importance of the original explanation w.r.t. to the feature
importance of the explanation for the perturbed example.
For decision tree’s rules, we consider the distance between
the original path and the path of the perturbed example.
As highlighted in Figure |4} in all datasets the explanations
provided by DCR are very stable, particularly w.r.t. LIME
and ReluNet. Notice that the figure does not report the
explanation sensitivity of logistic regression and decision
tree because it is trivially zero as they learn fixed rules for
the entire dataset. The area under the sensitivity curves of
all methods together with further details concerning this
experiment has been reported in Appendix [F}

DCR explains prediction mistakes In DCR, task predic-
tions are obtained by executing the logic rules. In this sense,
the rules transparently represent the model behavior, and
they can explain misclassifications at the level of tasks. For
example, reading DCR rules we can observe that a task was
mispredicted because some concepts have been predicted
wrongly, or the relevance scores are selecting a suboptimal
set of concepts. To test this, we analyze the mispredicted
test samples in datasets where we have access to ground
truth rules as reference (XOR and Trigonometry). Interest-
ingly, DCR is able to identify a mislabeled sample in the
XOR dataset (first row of Table 3)), highlighting an error in
the data generation process. In fact, the rule learnt by DCR
is correct y = 0 <= —¢cg A —c; but the ground truth label
was incorrect y = 1. In the Trigonometric dataset instead,
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Figure 4. Sensitivity of model explanation when changing the ra-
dius of the input perturbation. The lower, the better. DCR explana-
tions engender trust as they are stable under small perturbations of
the input. The same does not hold generally for LIME explanations
of XGBoost or Relu Net decision rules.

concepts were mispredicted, thus leading to incorrect rules.

Table 3. DCR explains prediction errors.

Dataset Concepts DCR rule Ground truth label
XOR [0.0, 0.0] y =0+ ¢y A ey y=1
Trigonometry [0.0,1.0,1.0] y =14 —coAciAc y=20
Trigonometry [0.0,1.0,0.0] y=0<+—-coAciA-cz y=1
Trigonometry [0.0,1.0,1.0] y=1<+ —-coAciAce y=0
Trigonometry [0.0, 1.0, 1.0] y =1+ —coAciAce y=0

DCR enables discovering counterfactual examples (Fig-
ure Besides being stable, DCR rules can be used to
find simple counterfactual examples, as introduced in Sec-
tion[3.4] In Figure [5| we show a model’s confidence in its
predictions as we increase the number of concept perturba-
tions. In making perturbations, we sort concepts from the
most relevant to the least using DCR rules, as suggested
by Wachter et al.|(2017). Our results show that DCR con-
fidence in its predictions drops quickly when we perturb
the most relevant concepts according to a given rule. This
enables us to discover counterfactual examples where the
concept literals are very similar to the original one rule.
This behaviour is emblematic of interpretable models such
as decision trees and logistic regression, for which similar
conclusions can be drawn. We also observe how in Muta-
genicity DCR confidence is a bit higher than interpretable
baselines. We can explain this behavior as for this challeng-
ing dataset DCR rules give equal relevance to a larger set
of concepts. Still, DCR confidence is much lower than a
black box such as XGBoost. Local explainers such as LIME
can only partially explain the decision process of black box
models such as XGBoost: LIME areas under the model

XOR Trigonometry
° 1.0
O
c
[
205 0.5
=
c
o
o
0.0 0.0
00 05 10 15 20 0 1 2 3
# Features Perturbed # Features Perturbed
Dot Mutagenicity
1.0 1.0
Q
s
c
[
205 0.5
c
o
o
0.0 0.0
00 05 10 15 20 00 25 50 75 100

# Features Perturbed # Features Perturbed

=== CE+DCR (ours)
CT-+XGBoost

CT+XGBoost+LIME
CT+Decision Tree

=== (CT+Logistic Regression
o= CT+Relu Net

Figure 5. Model confidence as a function of the number of per-
turbed features on counterfactual examples. The lower, the better.
Similarly to interpretable methods, DCR prediction confidence
quickly drops after inverting the truth degree of a small set of
relevant concepts, facilitating the discovery of counterfactual ex-
amples.

confidence curve are generally higher than the other meth-
ods. We report the actual values for all methods in Table [5]
together with further details and counterfactual examples.

S. Key findings & significance

Limitations One of the main limitations of DCR is that
its global behavior may not be directly interpretable, which
means that global rules may not perfectly align with the
exact reasoning of the model. This could be an issue in
cases where a user requires a precise understanding of the
global model behavior. Also, the complexity of DCR rules
may increase significantly when the difference between two
tasks can only be determined by using a very high number of
concepts. However, in most real-world cases, and in current
benchmark datasets for concept-based models, this issue
rarely arises. Finally, DCR requires concept embeddings
as inputs, which assumes the existence of concept-based
datasets or high-quality concept-discovery methods.

Relations with concept-based methods Interpretable
concept-based models (Koh et al., 2020) address the lack of
human trust in Al systems as they allow their users to under-
stand their decision process (Rudin, 2019} |Ghorbani et al.,
2019a}; Barbiero et al.l 2023)). These approaches come with
several advantages over other explainability methods as they
circumvent the brittleness of post-hoc methods (Adebayo
et al., 2018} Kindermans et al.,[2019) and provide a semantic
advantage in settings where input features are naturally hard
to reason about (e.g., raw image pixels) by providing expla-
nations in terms of human-interpretable concepts (Ghorbani
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et al., |2019a; |Georgiev et al.l [2022; |/Azzolin et al.| [2022;
Magister et al., [2022; [ Xuanyuan et al.,|2022). However, [Es{
pinosa Zarlenga et al.| (2022) and Mabhinpei et al.| (2021}
emphasise how state-of-the-art concept-based models either
struggle to efficiently solve real-world tasks using concept
truth-values only or they weaken their interpretability us-
ing concept embeddings to increase their learning capacity.
This is true even when concept-based models use a simple
logistic regression or decision tree to map concept embed-
dings to tasks because concept embedding dimensions do
not have a clear semantic meaning, and models compos-
ing such dimensions generate prediction rules that are not
human-interpretable. Our work solves this issue by introduc-
ing the first interpretable concept-based model that learns
logic rules from concept embeddings.

Relations with neural-symbolic methods A common
paradigm in neural-symbolic is to exploit deep learning mod-
els to map subsymbolic information (e.g. images) to an in-
termediate logical representation, which is then manipulated
using weighted logic formalisms, such as probabilistic logic
(DeepProbLog (Manhaeve et al., [2018), NeurASP (Yang
et al.l 2020)), fuzzy logic (Lyrics(Marra et al., [2020c),
LTN (Badreddine et al., 2022; Wagner & Garcez, [2021)))
or both (DLM (Marra et al., [2020b), RNM(Marra et al.,
2020a))). This sets DCR between concept-based and neural-
symbolic models. However, while these neural symbolic
models focus on how to maximally exploit available logic
knowledge (e.g. a logic program) to improve neural pre-
dictions, DCR focuses on learning such logical knowledge.
Other neural symbolic approaches, such as Neuro-Symbolic
Concept Learner (Mao et al., |2019), the Neural Logic
Machines (Dong et al., 2019), and the Neural State Ma-
chine (Hudson & Manning} 2019)), are actually closer in
spirit to concept based models as they exploit intermediate
symbolic representations. However, the decision-making
process on top of the concepts/symbols still relies on (or is
uniquely) an uninterpretable neural component. In contrast,
DCR encodes its decision process in a logical rule that is
executed explicitly giving the user full knowledge and con-
trol over the concept-to-task decision-making process. This
would be impossible in these neural symbolic approaches,
as the decision process is implicit in the weights of the
networks.

Key advantages of DCR The main advantage of DCR
w.r.t. existing interpretable and black-box methods arises
when dealing with challenging tasks where both inter-
pretability and accuracy should be maximized. For simpler
tasks, existing interpretable methods, such logistic regres-
sion, could be enough. On the other side, when interpretabil-
ity is not a hard user requirement, then a simple black-box
model would be easier to set up (e.g., it does not require
concept labels or concept encoders). However, in all cases

where interpretability plays a crucial role for the end user
and existing interpretable models fail, then DCR could be
preferable. Finally, compared to existing neural-symbolic
approaches, DCR has an edge in all settings where the
rules are unknown, while other methods (like DeepProbLog)
might be more stable when the full set of rules is known in
advance. For other limitations/drawbacks, please see our
reply to common questions.

Conclusion This work presents the Deep Concept Rea-
soner (DCR), the new state-of-the-art of interpretable
concept-based models. To achieve this, DCR builds for
each sample a weighted logic rule combining neural and
symbolic algorithms on concept embeddings in a unified
end-to-end differentiable system. In our experiments, we
compare DCR with state-of-the-art interpretable concept-
based models and black-box models using datasets span-
ning three of the most common data types used in deep
learning: tabular, image, and graph data. Our experiments
show that Deep Concept Reasoners: (i) attain better task
accuracy w.r.t. state-of-the-art interpretable concept-based
models, (ii) discover meaningful logic rules, and (iii) fa-
cilitate the generation of counterfactual examples. While
the global behaviour of the model is still not directly inter-
pretable, our results show how aggregating Boolean DCR
rules provides an approximation for the global behaviour of
the model which matches known ground truth relationships.
As a result, our experiments indicate that DCR represents a
significant advance over the current state-of-the-art of inter-
pretable concept-based models, and thus makes progress on
a key research topic within the field of explainability.
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A. Datasets & Experimental Setup

XOR dataset The first dataset used in our experiments is inspired by the exclusive-OR (XOR) problem proposed
by (Minsky & Papert, [1969)) to show the limitations of Perceptrons. We draw input samples from a uniform distribution
in the unit square x € [0, 1] and define two binary concepts {c1, c2} by using the Boolean (discrete) version of the input
features ¢; = W, ~0.5. Finally, we construct a downstream task label using the XOR of the two concepts y = ¢; @ ca.

Trigonometric dataset The second dataset we use in our experiments is inspired by that proposed by Mahinpei et al.
(2021) (see Appendix D of their paper). Specifically, we construct synthetic concept-annotated samples from three
independent latent normal random variables h; ~ A(0,2). Each of the 7 features in each sample is constructed via a
non-invertible function transformation of the latent factors, where 3 features are of the form (sin(h;) + h;), 3 features
of the form (cos(h;) + h;), and 1 is the nonlinear combination (h? + h3 + h3). Each sample is then associated with 3
binary concepts representing the sign of their corresponding latent variables, i.e. ¢; = (h; > 0). In order to make this task
Boolean-undecidable from its binary concepts, we modify the downstream task proposed by Mahinpei et al.| (2021)) by
assigning each sample a label y = ¥ (5, 4 1,,)>0 indicating whether h1 + hy is positive or not.

Vector dataset As much as the Trigonometric dataset is designed to highlight that fuzzy concept representations generalize
better than Boolean concept representations, we designed the Vector dataset to show the advantage of embedding concept
representations over fuzzy concept representations. The Vector dataset is based on four 2-dimensional latent factors from
which concepts and task labels are constructed. Two of these four vectors correspond to fixed reference vectors w, and w_
while the remaining two vectors {v;}7_; are sampled from a 2-dimensional normal distribution. We then create four input
features as the sum and difference of the two factors v;. From this, we create two binary concepts representing whether
or not the latent factors v; point in the same direction as the reference vectors w; (as determined by their dot products).
Finally, we construct the downstream task as determining whether or not vectors v; and vy point in the same direction (as
determined by their dot product).

MNIST Addition In the MNIST addition dataset (Manhaeve et al., 2018)), MNIST images are paired and the pair is
labelled with the sum of the two corresponding digits. There are 30000 labelled pairs. The two images are given as two
separate inputs to the model (i.e. they are not concateneted).

Mutagenicity The Mutagenicity dataset (Morris et al., [2020) is a labelled graph classification dataset, where a graph
represents a molecule. The task is to predict whether the molecule is mutagenic or non-mutagenic. The dataset has 4337
graphs. We use the version available as part of the PyTorch Geometric (Fey & Lenssen, |2019) library.

CelebA We use the CelebA dataset to simulate a real-world condition where the set of training and test concepts is not
the same, though the embeddings of training and test concepts are still correlated. To this end, we work using pre-trained
embeddings generated by a Concept Embedding Model in the setting described by Espinosa Zarlenga et al.| (2022). We then
select the 3 most frequent concepts and train DCR and all the other baseline models on these concepts. However, at test time
shift the set of concepts and we use the 3rd, 4th, and 5-th most frequent concept to make predictions. While all the first 5
concepts are highly correlated being attributes in human face images, the shift in distribution is quite significant. DCR can
cope with this shift without any modification. However, usually AI models require a fixed number of features at training and
test time. For this reason, we use zero-padding on training and test concepts to allow the other baselines to be trained and
tested.

B. Training details
B.1. Deep Concept Reasoner

For all datasets we train DCR using a Godel t-norm semantics. We also implement the neural modules ¢ and ) as with
two-layer MLPs with a number of hidden layers given by the size of the concept embeddings.

For all synthetic datasets (i.e., XOR, Trig, Dot) and for CelebA we train DCR for 3000 epochs using a temperature of
7 = 100. In Mutagenicity we train DCR for 7000 epochs using a temperature of 100.
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B.2. Concept Embedding Generators

To generate concept embeddings on synthetic datasets (i.e., XOR, Trig, Dot), we use a Concept Embedding Model (Es{
pinosa Zarlenga et al., 2022) implemented as an MLP with hidden layer sizes {128,128} and LeakyReLU activations.
When learning concept embedding representations in synthetic datasets, we learn embeddings with m = 128 activations.

In CelebA, we use a Concept Embedding Model on top of a pretrained ResNet-34 model (He et al.| | 2016) with its last layer
modified to output npggen = ™ activations. In this case, we learn embeddings with m = 16 activations, smaller than in the
synthetic datasets given the larger number of concepts in these tasks.

In Mutagenicity, we use a Graph Convolutional Network (Scarselli et al., 2008; Morris et al., [2019) to map input graphs to
the given task. We then extract concept embeddings using GCExplainer (Magister et al., 2021} ?), a graph-based variant
of the Automated Concept-based Explanation proposed by |Ghorbant et al.|(2019b) for image data. We implement the
GNN with four layers of graph convolutions with 40 hidden neurons followed by leaky ReLU activation function each. We
then apply mean pooling on node embeddings produced by the preceding graph convolutions and extract predictions via
a linear readout function with 10 hidden units. We train these networks for 20 epochs with a learning rate of 0.001 and a
batch size of 16 graphs, where we use an 80:20 split for the training and testing set. After training, we run GCExplainer on
the node embeddings computed before pooling and extract 30 concepts using k-Means(Forgyl |1965)), where each concept
corresponds to a cluster of graph nodes in the embedding space. We encode these cluster labels as one-hot binary arrays and
associate each node with the binary label of the closest cluster. We then obtain the concept truth values of a given graph by
aggregating the binary labels of its nodes. To generate concept embeddings, we consider the node embeddings closest to the
cluster centroids for active concepts.

Training Hyperparameters In all synthetic tasks, we generate datasets with 3,000 samples and use a traditional 70%-
10%-20% random split for training, validation, and testing datasets, respectively. During training, we then set the weight of
the concept loss to o = 1 across all models. We then train all models for 500 epochs using a batch size of 256 and a default
Adam (Kingma & Bal,2014) optimizer with learning rate 102,

In our CelebA task, we fix the concept loss weight to @ = 1 in all models and also use a weighted cross entropy loss for
concept prediction to mitigate imbalances in concept labels. All models in this task are trained for 200 epochs using a batch
size of 512 and an SGD optimizer with 0.9 momentum and learning rate of 5 x 1073,

In all models and tasks, we use a weight decay factor of 4e — 05 and scale the learning rate during training by a factor of 0.1
if no improvement has been seen in validation loss for the last 10 epochs. Furthermore, all models are trained using an early
stopping mechanism monitoring validation loss and stopping training if no improvement has been seen for 15 epochs.
B.3. Hyperparameter search for benchmark classifiers
xWe run a grid search using an internal 3-fold cross-validation to find the optimal settings for benchmark classifiers. The
parameter grid we use is:

* decision tree

— max depth: [2, 4, 10, all leaves pure]
— min_samples_split: [2, 4, 10]
— min_samples_leaf: [1, 2, 5, 10]

* logistic regression
— penalty: [11, 12, elasticnet]
¢ XGBoost

— booster: [tree, linear, dart]

C. Mutagenicity: Extracted Concepts

Here we report the visualization of the concepts extracted in Mutagenicity by GCExplainer. Following [Magister et al.|(2021)
we represent the concept of a node by expanding and visualizing its p-hop neighborhood. In this experiment we set p = 4 as
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we used four graph convolutional layers. Figures [6]-[§]show the 30 concepts extracted using GCExplainer when k& = 30
in k-Means, where the red nodes are the nodes clustered together for a given concept. A human can identify the concept
present by reasoning about which features and structures are repeated across the five sample subgraphs, representative of a
concept. Using this approach, a number of concepts can be clearly identified. For example, concept O (Figure[6] highlights
the importance of the Carbon atom for the prediction that the molecule is mutagenic. In contrast, concepts 8 (Figure [6])
and 28 (Figure [§) highlight the importance of the star structure in both the prediction of the molecule being mutagenic and
non-mutagenic. Concept 11 clearly identified a complex structure of carbon, nitrogen and hydrogen atoms for predicting the
label *mutagenic’. For a complete overview, we visualise the full molecule of the medoids of each cluster in Figures[9]and
[T0} highlighting in red the node corresponding to the closest concept. This highlights the size and variety of the molecules
classified as different concepts.
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Figure 6. Concept discovered by the graph concept explainer. Part I.
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Figure 7. Concept discovered by the graph concept explainer. Part II.
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Figure 8. Concept discovered by the graph concept explainer. Part III.
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Figure 9. Full molecule corresponding to the closest node embedding to the concept centroid. Part I.
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Figure 10. Full molecule corresponding to the closest node embedding to the concept centroid. Part II.
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D. Softmax temperature effect on relevant concepts

We perform an ablation study on the temperature hyperparameter of DCR. This hyperparameter controls the number of
concepts selected by DCR to generate rules in the activation function of Equation[6] A low temperature biases DCR towards
simpler rules composing fewer concepts, while a high temperature biases DCR towards more complex rules composing
many concepts. To assess this we train DCR on the embeddings of a pre-trained Concept Embedding Model on the
Caltech-UCSD Birds-200-2011 dataset (Wah et al.,[2011) as it contains a large number of concepts. We test 7 temperature
ranges 7 € [0.1, 10] and we train DCR using 5 different initialization seeds.

— Temperature ablation
32100 - -
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Figure 11. Temperature ablation on pre-trained concept embeddings from the CUB dataset.

E. Number of concepts effect on training and test time

We evaluate the computational cost of DCR as a function of the number of training concepts. To this end, we train DCR
on the embeddings of a pre-trained Concept Embedding Model on the Caltech-UCSD Birds-200-2011 dataset (Wah et al.,
2011)) as it contains a large number of concepts. We then randomly select 10, 50, 100, and 150 concepts to train DCR. We
train DCR using 5 different initialization seeds. We observe that the computational time increases linearly when the number
of concepts is small, and then it becomes almost constant.

Training Time Test Time
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O (@] =
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10 50 100 150 10 50 100 150
Number of concepts Number of concepts

Figure 12. DCR computational time on pre-trained concept embeddings from the CUB dataset.

F. Sensitivity analysis

In Table[d] we report the results of the sensitivity analysis comparing DCR with interpretable models and local post-hoc
explainers. More precisely, we report the area under the sensitivity curves of Figure ] when increasing the perturbation
radius. The lower the values, the more stable the local explanations are on similar samples. These samples x* correspond to
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randomly perturbed sample = drawn by from the test set. More precisely, we draw them from a Gaussian distribution with
maximum radius e. These perturbations must be non-significant, i.e., the model prediction must not change. We can see how
DCR sensitivity is typically close to existing interpretable models. On the contrary, the compared explanation-based methods
Lime and ReluNet have higher sensitivity, strongly reducing the user trust in these explanation methods. Indeed, since
samples are very similar and the model predictions do not change, a user expects that also the corresponding explanation
should not change, which does not happen for these methods.

Table 4. AUC of the explanation sensitivity curves when increasing the perturbation radius e. The lower, the better.

Model XOR Trig Vec Mutag
DT 0.000+0.000 0.000+0.000 0.000+0.000 0.000-0.000
LR 0.000-0.000 0.000+0.000 0.000-+0.000 0.000-0.000

ReluNet 0.939+1.300  0.110+0.181  0.148+0.247  0.995+1.480
LIME 0.984+0.885 0.013+0.000 0.592+0.534  1.900+0.969
DCR 0.000+0.000 0.000+0.000 0.165+0.614  0.000-0.000

G. Counterfactual explanations

In table[5] we report the Areas under the model confidence curves of Figure [5] when increasing the number of perturbed
features. The lower the values, the easier it is to find a counterfactual sample. By comparing DCR with existing interpretable
models and local post-hoc explainers, we can see how DCR provides the lowest values in three datasets out of four,
confirming that the provided explanations are very precise as they correctly indicate the most important features for a given
prediction.

In Table[f] instead, we report some examples of counterfactual rules provided by DCR on some benchmarked datasets.

Table 5. Area under the model confidence curves reported in Figure 5] against counterfactual samples when increasing the number of
perturbed features. The lower, the better. Our model reports the lowest value on three datasets out of four, confirming that DCR
explanations can be effectively used to find counterfactual examples.

Model XOR Trig Vec Mutag
DT 0.339+0.468 0.395+0380 0.443+0.442 0.185+0.311
LR 0.992+0.015 0.451+0.402  0.530+0.301  0.347+0.351

ReluNet  0.622+0.476  0.469+0.420 0.448+0.457  0.279+0.387
LIME 0.674+0.462 0.424+0.422 0.450+0.438 0.249+0.372
XGBoost  0.680+0.460 0.739+0.431  0.804+0.426 0.924+0.226
DCR 0.344:0505 0.255+0.436  0.394+0.450  0.705+0.467

Table 6. Counterfactuals (Boolean)

Dataset Old Concepts  Old prediction New Concepts New Prediction
XOR =f0, = f1 y=0 =f0, f1 y=1
XOR f0,—f1 y=1 =f0, = f1 y=0
Trigonometry —f0, =f1,-f2 y=0 -f0, f1, f2 y=1
Trigonometry  f0, f1, - f2 y=1 =f0,-f1,-f2 y=0
Vector f0,—f1 y=0 -f0, f1 y=1
Vector =f0, - f1 y=1 70, f1 y=0
CelebA -f0,~f1,-f2 y=0 f0, f1, f2 y=4
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H. MNIST addition experiment

In this experiment, we tested DCR in a task where it is not provided with any label on the concepts. In the MNIST addition
dataset (Manhaeve et al.l 2018)), pairs of MNIST images are labelled with the sum of the corresponding digit. The single
images are, therefore, never labelled. The idea behind the task is that an image classifier can still be asked to predict the class
of the single images, while a differentiable symbolic program can be used to map the class of the images to their sum. In
terms of learning, the knowledge of both the label on the addition and the symbolic program provides a distant supervision
signal to the image classifier.

This task can be easily mapped in terms of a concept-based model. The output of the classifier for the two images constitutes
a set of 20 concepts (i.e. 10 class predictions for each of the two images). The set of all possible additions constitutes a
set of 19 tasks. The MNIST addition task could be considered a first example of a more structured (i.e. relational) setting,
where the input is a list of two images. However, it is still simple enough not to require any specific modelling.

The absence of direct supervision on the concepts puts our system in a different regime. In fact, there is no loss that forces
the concept probabilities to represent crisp decisions. The softmax activation function tends to crisp decisions only when
coupled with a categorical cross-entropy loss. In the absence of such loss, the network can still exploit the entire categorical
distribution as an embedding to latently encode the identity of the digits.

Our solution to the absence of a concept loss is made of two ingredients. First, the softmax output distribution is substituted
with a Gumbel-softmax sampling layer. The Gumbel-softmax forces the network to always make crisp decisions by sampling
from the corresponding categorical distribution. Notice that a categorical distribution and its one-hot samples coincide when
the distribution becomes very peaked on its prediction (e.g. at the end of the learning). Second, we introduce a second
task predictor function fy : C — Y, that akin to standard concept bottleneck models, predicts the task only from the
probabilities, and we add a corresponding loss encouraging fxn(g(x)) = y. The goal here is to force the model to exploit
(and thus learn) the concept probabilities ¢; and not to rely only on their embeddings ¢;.

In Table ??, we show the comparison with state-of-the-art Neural Symbolic frameworks, as described in the main text.
Moreover, in Table[7} we show the entire list of global rules learned by DCR, showing that it actually captured perfectly the
semantics of the addition relation.
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Table 7. MNIST addition global rules for 10000 training examples. f;; reads “class of the digit in position ¢ is j. Therefore, the rule
Yo < foo A fio means that if the first digit is a 0 and the second digit is a O then the sum is a 0. The semantics is correct except for a
single rule ys < fos A fis, which is easily identifiable as having a count of 1. Notice that we had to map the network concept IDs to the
corresponding human digits, as there was no supervision on concepts during training.

RULE COUNT RULE COUNT
Yo < foo A fio 93 Yo < fo3 A fie 39
y1 < foo A fu1 110 Yo < foo A fio 100
y1 < for A fio 102 Yo < for A fi2 110
y2 < foo A fi2 89 Yo < fo2 A fi7 102
y2 < fo1 A fi1 119 Yo < fos A f1a 89
y2 < fo2 A fio 101 Y10 < for A fio 115
Y3 < for A fi2 124 y10 < fos A f1a 97
y3 < fos A fio 96 Y10 < foo A fi1 100
Y3 < foa A fu1 115 Y10 < fos A fi2 100
y3 < foo A f13 100 y10 < for A f13 113
ya < foz A fu1 121 Y10 < foa A fi6 94
ya < foa A fro 84 y10 < fo3s A fir 39
ya < for A f13 137 Y10 < fo2 A fis 103
Ya < foa A f12 105 Y10 + fos A fis 75
Ya < foo A fia 112 y11 + fos A fia 39
Y5 < for A fia 104 y11 < fo3 A fis 105
Y5 < fos A fi2 105 y11 < for A fa 94
Y5 < foa A f11 113 Y11 < fog A fi2 97
Y5 < foo A fis5 95 y11 < foa A fir 111
ys < fo2 A fi3 90 y11 < fos A fie 86
Y5 < fos A fio 95 y11 + fo2 A fio 105
Y6 < fo2 A fia 92 y11 < fos A fis 104
Y6 < fos A f11 96 Y12 < fo3 A fio 98
Y6 < foo A fie 109 Y12 < foa A fis 87
Y6 < foa A f12 91 y12 < fos A fi6 105
Y6 < fo1 A fis5 36 y12 < for A fis 96
Yo < fo3 A fi3 107 y12 < foo A fi3 106
Y6 < fos A f1o 92 Y12 + fos A fir 94
y7 < foo A f17 100 Y12 < fos A fia 87
y7 < foa A f13 108 Y13 < fos A f17 106
y7 < fo1 A fie 103 y13 < fos A f15 85
y7 < Jo2 A fi5 81 Y13 < foo A f1a 82
y7 < for A fio 103 y13 < for A fie 118
yr < fos A f11 137 Y13 + fos A fis 79
yr < fos A f12 87 Y13 + foa A fio 100
y7 < fos A fia 117 Y14 < fos A fis 105
ys < fos A f13 72 y1a < for A fir 98
ys < fo1 A fir 122 Y14 < fos A fio 78
ys < fos A fis5 99 Y14 < foo A f15 74
ys < fo2 A fie 97 y14 < fos A fis 101
ys < fos A fi2 90 Y15 + foo A fie 107
ys < fos A fio 96 Y15 < fos A fir 95
ys < for A fun 116 Y15 < for A fis 103
ys < foa A f1a 106 Y15 < fos A f1o 111
ys < foo A fis 100 y16 < for A fio 115
ys < fos A fie 1 y16 < foo A fi7 100
Yo < foa A fis 87 y16 < fos A fis 84
Yo < fos A f11 112 y17 < foo A fis 100
Yo < fos A f13 76 y17 < fos A fio 36
Yo < fo1r A fis 113 Y18 < foo A fio 102

Yo < foo A f1o 94

Our solution to the MNIST addition task shows that DCR can be enhanced with an unsupervised (or distantly supervised)
criterion for the learning of meaningful concepts. This creates interesting links with generative models for learning
representations, but we leave such interpretation for future works.

The architecture of the image classifiers is those in (Manhaeve et al., 2018). The additional task network is MLP with 1
hidden layer of 30 hidden neurons and relu activations. We searched over the following grid of parameters (bold selected):
embedding size [10, 20, 30, 50]; gumbel-softmax temperature [1, 1.25, 1.50, 1.75, 2.0].
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I. Complexity of logic rules

We compute rule complexity as the average size of the learnt logic rules. Table 8] summarizes the main outcomes comparing
DCR rules with decision tree rules. In most datasets, such as Trigonometry, Dot, or CelebA, the rule complexity of DCR
matches that of decision tree rules while providing superior task performance. However, in Mutagenicity, there is a tradeoff
between performance and complexity compared to decision trees. Nevertheless, we don’t observe a significant increase
in rule complexity as shown in the plot, partly because DCR rules are ”’per sample.” However, if we were to learn global
rules, the complexity would likely increase, especially if multiple combinations of concepts could result in the same task
prediction. It is worth noting that overly complex rules may not be a machine error, but rather a limitation of the human side.
For example, asking a model to explain complex tasks using raw features like pixel intensities as concepts would lead to
complex rules.

Table 8. Complexity of logic rules
CE+DCR (ours) CT+Decision Tree CE+Decision Tree

XOR 2.00 £ 0.00 2.00 £ 0.00 1.40 £0.16
Trigonometry  3.00 £ 0.00 3.00 £ 0.00 1.40 £0.16
Dot 2.00 £0.00 2.00 £0.00 1.93 £0.07
Mutagenicity  13.57 +0.62 4.844+0.74 2.35+£0.35
CelebA 1.00 £ 0.00 1.00 £ 0.00 5.86 £0.56

J. Code, Licences, Resources

Libraries For our experiments, we implemented all baselines and methods in Python 3.7 and relied upon open-source
libraries such as PyTorch 1.11 (Paszke et al.,|2019) (BSD license) and Scikit-learn (Pedregosa et al., 2011) (BSD license). To
produce the plots seen in this paper, we made use of Matplotlib 3.5 (BSD license). We will release all of the code required
to recreate our experiments in an MIT-licensed public repository.

Resources All of our experiments were run on a private machine with 8 Intel(R) Xeon(R) Gold 5218 CPUs (2.30GHz),

64GB of RAM, and 2 Quadro RTX 8000 Nvidia GPUs. We estimate that approximately 240-GPU hours were required to
complete all of our experiments.
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